

Updates and Results from Recent LANL PFNS and Neutron Scattering Measurements

Keegan J. Kelly On behalf of the Chi-Nu and CoGNAC Teams

2022 CSEWG Meeting

Outline

- LANSCE Overview
- Chi-Nu PFNS Updates
 - Final ²³⁵U Results
 - Preliminary ²³⁸U Results
 - Very preliminary ²⁴⁰Pu Results
 - PFNS Ratios
- CoGNAC Neutron Scattering Approach
 - Prelim. Results for ${}^{12}C(n,n'_1)$ Cross Section
 - Prelim. Results for Inelastic Scattering on ²⁷AI
 - Prelim. Results for Inelastic Scattering on ⁵⁶Fe
- Future Work

The LANSCE Accelerator

Chi-Nu Experiment Overview

Haight *et al.* NDS **123** 130 (2015) Devlin *et al.* NDS **148** 322 (2018) Kelly *et al.* PRC **102** 034615 (2020)

A-UR-22-XXXXX

²³⁵U Final PFNS Results

Kelly et al. PRC 105, 044615 (2022)

²³⁸U Preliminary PFNS Results

²⁴⁰Pu Very Preliminary PFNS Results

- Single correlation matrix describing relationship between all data points of each target
- Ratios of ²³⁹Pu, ²³⁵U, ²³⁸U, and ²⁴⁰Pu to each other will be available soon

CoGNAC n-y Approach to Scattering

- PSD n- γ separation \Rightarrow treat each detector as both n and γ detector
 - Incident Neutron Energy, E_n^{inc} , from t_0 - t_γ time difference
 - Outgoing Neutron Energy, E_n^{out} , from t_γ - t_n time difference
- Chi-Nu liquid scintillator array and in-development CLYC detector array

Iterative Unfolding of Neutron Spectra

$$m_{\alpha|\beta}^{(n+1)}(E) = \frac{m_{\alpha|\beta}^{(n)}(E)c_{\alpha}(E)}{\sum_{i=1}^{N} \mathcal{R}(E, E_i)m_{\alpha|\beta}^{(n)}(E_i)}$$

Kelly *et al.*, NIMA **1010** (2021) 165552 Kelly *et al.*, NIMA **866** (2017) 182 Gold, Report ANL-6984 (1964)

- Improves resolution of state excitations
- Corrects for environmental *n* scattering effects
- Extract full strength of each excited state
 - Demonstrated with continuous PFNS in MCNP

Preliminary ${}^{12}C(n,n'\gamma)$ Cross Section

- Correlated *n*-γ Distributions: Kelly *et al.*, PRC **104** (2021) 064614
- Note: All data sets are shape data (not absolute)
- Measured cross section 3 ways: Liqd. n- γ , Liqd. γ , and CLYC γ

Prelim.¹²C($n,n'\gamma$) Cross Section: Liq. Scint. γ ¹²C(n,n')¹²C^{*} Cross Section 0.5 5/2 ENDF/B-VIII.0 7/2 Geel x 0.87 nelastic Cross Section (b) 0.4 Rogers Wender x 1.11 Galati 0.3 5/2+ 0.2 3/2 0.1 9/2+ 0 4.8 5.2 5.6 6 6.4

Incident Neutron Energy (MeV)

LA-UR-22-

11/2/2022 | 12

A-UR-22-XXXXX

Preliminary Results for ${}^{27}Al(n,n'\gamma)$

• All data normalized to 4.0 MeV data point at $E_x = 2212 \text{ keV}$

Preliminary Results for 56 Fe($n,n'\gamma$) - 847 keV 2⁺

Preliminary Results for 56 Fe $(n,n'\gamma)$

• All data normalized to 4.0 MeV data point at $E_x = 2085$ keV

Summary

- OES-funded Chi-Nu PFNS Measurements Nearing Completion
 - 235 U PFNS finalized, published, included in ENDF/B-VIII.1 β eval.
 - ²³⁸U PFNS nearly complete, submitted for evaluation soon
 - NCSP-funded ²⁴⁰Pu measurement completed, analysis underway
- n- γ analysis technique works well for inelastic cross sections
- γ -only promising as well for select isotopes and E ranges
- Multiple scattering results in line for publication next year

→Initial work funded by LDRD Project 20190588ECR →Exp. and analysis funded by LDRD Project 20210329ER → γ -production cross section measurements funded by NA-22 via Proposal ID 0000260569 submitted to DOE-FOA-0002440 →Fe data acquisition and, in part, analysis funded by Proposal ID 0000017653 submitted to DOE-FOA-17-1763 →²⁴⁰Pu PFNS work funded by NCSP

