

Sub-Thermal Transmission Experiments of Organic Materials at the RPI Gaerttner LINAC Center

A.M. Daskalakis and M.J. Rapp

CSEWG Meeting, October 31st – November 4th, 2022

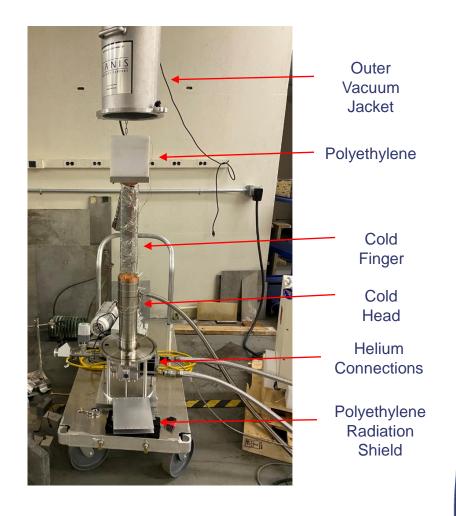
Upton, New York 11973

Overview

- RPI LINAC
 - Enhanced Thermal Target with Cold Moderator
 - Sub-thermal Transmission Experiments
- Sample preparation
- Measurement overview
- Preliminary results
- Next steps

RPI LINAC

- The RPI LINAC electron linear accelerator capable of generating short bursts of electrons and accelerating them to energies of 60 MeV
- Electrons impinge on a neutron producing target and generate neutrons via γ ,n reaction
- Neutron time-of-flight (TOF) used to calculate incident neutron energy


ETTC - Enhanced Thermal Target Cold Moderator

Neutronics

- Polyethylene
 - Large enough to cover collimation
 - As close to source of neutrons as possible
 - As cold as possible in a consistent fashion
- Maximize gain over existing source (ETT)
- Metric: Integral counts in 1 5 meV range

System

- High density polyethylene (HDPE)
 - < 30 K w/ 1.5 kW on target
 - · Good connection to cryostat
- Long cold finger → protect cold head from radiation
- Large cold finger cross-sectional area
- Portable; Minimal material; Can withstand High-Vacuum
- Single Stage Cryo-cooler

¹D. Fritz, "Design of a Cold Moderator for Total Cross Section Measurements of Moderator Materials in the meV Energy Range", Rensselaer Polytechnic Institute (Dec. 2022)

Sub-Thermal Transmission Experiments

- Transmission experiments measure the total cross section, $\sigma_t(E)$
- NE-905 Li-6 glass scintillation detector
 - 76.2 mm diameter
 - Glass perpendicular to neutron beam
- 3/8th inch fixed Pb

Monitor Normalize and Sum Counts

Transmission is Calculated

$$C_s(i) = \frac{M_{opt}}{L_{opt}} \sum_{r=1}^{R} \frac{L_s, r}{M_s, r} C_{s,r}(i)$$

$$T(t_i) = \frac{(C_s(t_i) - K_s B(t_i) - B0_s)}{(C_o(t_i) - K_o B(t_i) - B0_o)}$$

 C_s : Monitor normalized and summed counts in sample s

M_{opt}: Monitor counts in optimal run

 $M_{s,r}$: Monitor counts in run r of sample s

Lont: LINAC triggers in optimal run

L_{s.r}: LINAC triggers in run *r* of sample s

 $C_{s,r}$: Counts in run r of sample s

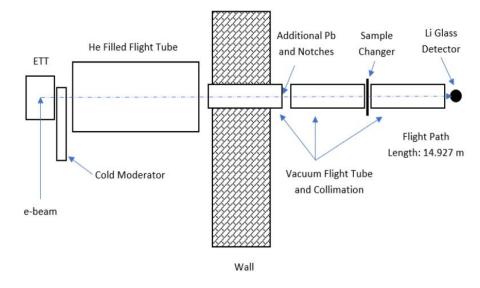


Figure 5.1: Side view of neutron flight path for ETTC.

 \longrightarrow

Cross Section is Derived

$$\sigma_{t,measured}(t_i) = \frac{-1}{N} * ln(T(t_i)) [barns]$$

 $T(t_i)$: Transmission for time channel (t_i)

 K_S , K_O : Background normalization factors for sample, open

B: Time-dependent background fit for time channel (t_i)

 $B0_S$, $B0_O$: Constant background for sample, open

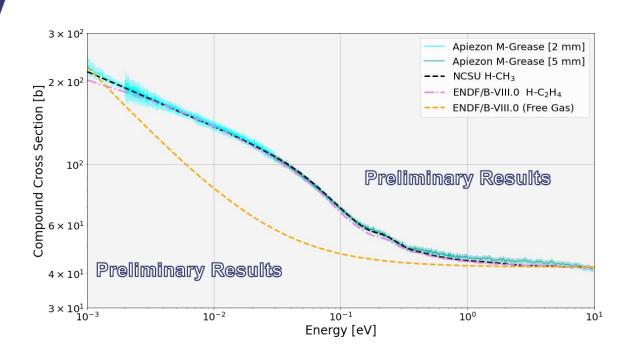
 $\sigma_{t,measured}(t_i)$: Measured total cross section for time channel (t_i)

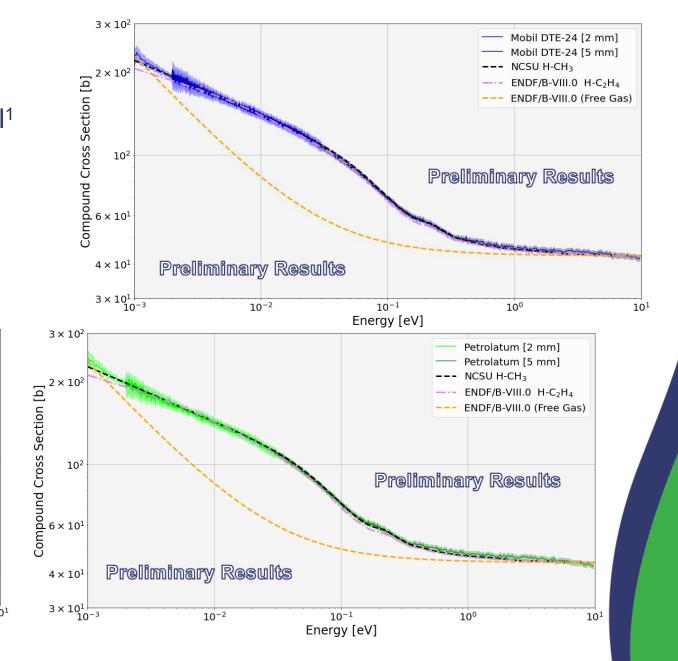
N: Atomic areal density of sample.

Sample Preparation

- Sample chemistry obtained for each material
- Two sample thicknesses were needed to cover region-of-interest:
 - 2 mm < 0.3 eV < 5 mm
- Quartz cells (Starna Cells) used
 - Used with other measurements
 - Very tight tolerances
- Petrolatum and Apiezon M-Grease required a water bath ~70-80 C
 - Samples observed to melt between 50 and 60 C
 - High viscosity
 - Active volume of each cell was fully emersed
 - Air bubbles (voids) removed from all samples
 - Controlled heating and cooling

Sub-Thermal Measurement Overview

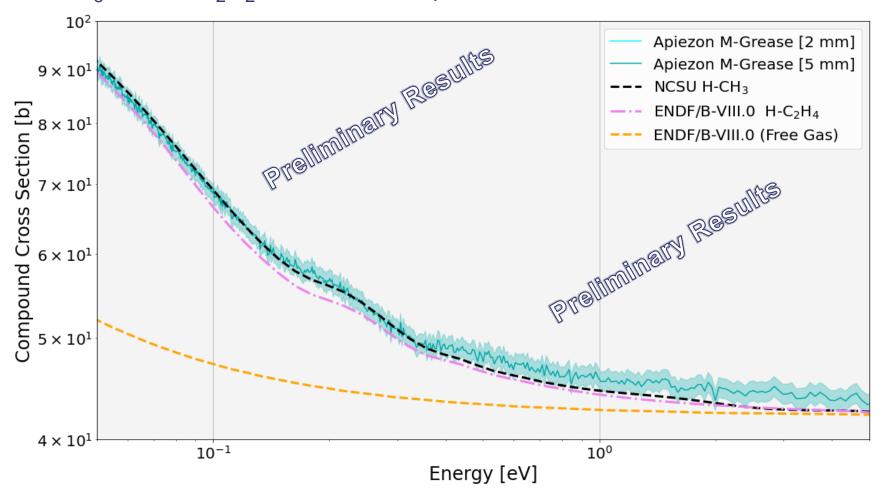

- Experiment Details
 - Repetition rate 18 pulse per second
 - Pulse Width 588 ns
 - Beam Energy ≈ 48 MeV
 - Beam Power ≈ 220 W
- Beam Parameters
 - Profile Circular
 - Diameter¹ 44.5 mm
- Sample Information
 - Temperature 22 C
 - Shape Cylinder
 - Diameter 47 mm
 - Thicknesses 2 mm and 5 mm
- Two weeks of data collected
 - 160 hours of data
 - 26 hours for each 2 mm sample
 - 21 hours for each 5 mm sample
 - 9 hours for each Open measurement



¹ At the sample position

Preliminary Results

- From ~0.001 to 10 eV heavy paraffinic oil¹ TSL (H-CH₃) approximates cross section better than ENDF/B-VIII.0 free gas
- Slight improvement over ENDF/B-VIII.0
 H-C₂H₄ at low, ≤ 2 meV, energies



¹ C.A. Manring, A.I. Hawari, "Assessment of Thermal Neutron Scattering in a heavy Paraffinic Molecular Material", PHYSOR 2018, Cancun, Mexico, April 22-26, 2018

Preliminary Results

• Both H–CH₃ and H–C₂H₂ seem to underpredict the cross section above 0.4 eV.

Next Steps

- Calculate experiment systematic uncertainty
- Complete background analysis
 - Time-dependent
 - Time-independent
- Complete sample characterization
 - Impurities, densities, uncertainties, etc.
- Document results