Photonuclear data processing and validation for ENDF/B-VIII.1

W. Haeck

CSEWG, October 31 – November 4, 2022
Outline

• Processing photonuclear data with NJOY2016
• Experimental data for validation
• Other validation exercises
Photo-atomic and photo-nuclear data in ENDF

• Photo-atomic and photo-nuclear data have their own distinct sub-library
 - Photo-atomic data is given for elements (photons interact with the electron cloud)
 - Photo-nuclear data is given for nuclides (photons interact with the nucleus)
• ENDF files use distinctly different formats for these sub-libraries
 - Photo-atomic sub-library (NSUB=3)
 - MF23 for smooth cross sections
 - MF27 for coherent scattering form factors and incoherent scattering functions
 - MF26 for secondary particle distributions
 - Photo-nuclear sub-library (NSUB=0)
 - Essentially the same as incident neutron and incident charged particle sub-libraries
 - MF3 for cross section data
 - MF4-MF6 for secondary particle distribution data
 - MF31-MF40 for covariance data
Processing modules in NJOY2016

Multigroup photo-atomic data

Multigroup photo-nuclear data

Continuous energy photo-atomic data

Continuous energy photo-nuclear data
Photo-atomic and photo-nuclear ACE libraries

- Official ACE libraries for MCNP: https://nucleardata.lanl.gov
- Photo-atomic libraries
 - Multiple photo-atomic libraries have been released since 1982
 - Most recent version: MCPLIB63 and MCPLIB84 released in 2012
- Photo-nuclear libraries
 - LA150U released in 2000 and updated in 2001 (for a limited number of nuclides)
 - endf70u was released with MCNPX and contains more nuclides
- Our long term goal: a new photo-nuclear ACE library based on ENDF/B-VIII.1
 - Work on improving processing (NJOY2016.64 and 2016.66)
 - Work on adding the photo-nuclear format to the ACE format specifications
 - Work on verification and validation for such a new library
Recent work on photo-nuclear data processing

• Traditional photo-nuclear data
 – Secondary photon distributions traditionally given using the LAW=1 LANG=1 format
 – Traditionally using a single Legendre coefficient (i.e. isotropic distribution)
 – This assumption was hardcoded in NJOY2016’s ACER module

• And then the IAEA-2019 library was released (August 2020)
 – Secondary distributions are using anisotropic Legendre expansion

• A major update for photo-nuclear data processing: NJOY2016.66
 – Secondary photon distributions now translated into ACE LAW=61
 – Properly handle photo-fission neutron multiplicity data when MF6/MT18 is used

• Please note: only MCNP6.3 is capable of using the photonuclear ACE files produced by NJOY2016.66
Validation against experimental data

• Experimental data and benchmarks for validation
 - Requires demonstratable sensitivity to photo-nuclear interactions

• Barber and George (1959) has been used in the past
 - Neutron yields from targets bombarded by electrons
 - C, Al, Cu, Ta, Pb and U targets
 - Electron beam energies between 15 and 40 MeV
 - 62 measurements were performed
Validation against experimental data

• Preliminary MCNP 6.3 simulation results
 - Electron, photon and neutron transport
 - Using LA150U, ENDF/B-VIII.0 and IAEA-2019 photonuclear data
Other validation exercises

• The Barber and George measurements are a good star, but we would like to have more

• Another option is data comparison
 − Compare the impact of using the ENDF/B-VIII.0 versus the IAEA-2019 library through “probing”
 − Tallying particle spectra outside a disk bombarded mono-energetic photon or electron beam

• For example:
 − Pu239 disk in a 14 and 20 MeV photon beam