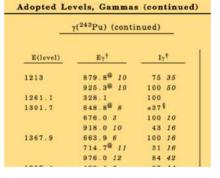
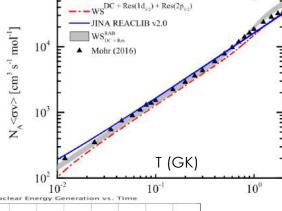
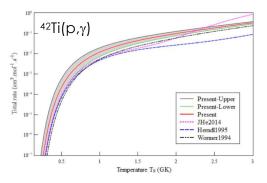
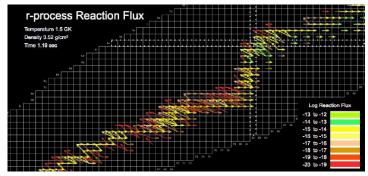

USNDP 2022

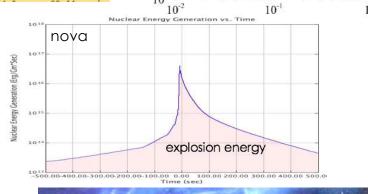
Michael Smith, Caroline Nesaraja, Larry Zhang


ORNL is managed by UT-Battelle, LLC for the US Department of Energy




Members and Scope of Activities



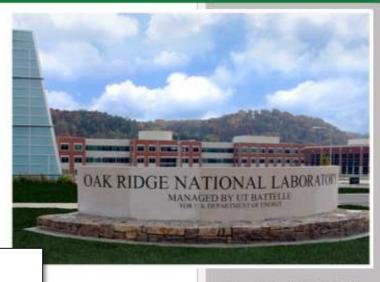


NUCASTRODATA.ORG

- Members and Activities:
 - Caroline Nesaraja: Research Staff Member ENSDF evaluator
 - Michael Smith: Research Staff Member nuclear astro data, software systems
 - Larry Zhang: Student nuclear astrophysics data

Murray Martin – Nuclear Data Pioneer

In Memoriam Murray J. Martin, 1935-2022


The field of nuclear data lost a pioneer with the passing of Murray Martin on March 9, 2022.

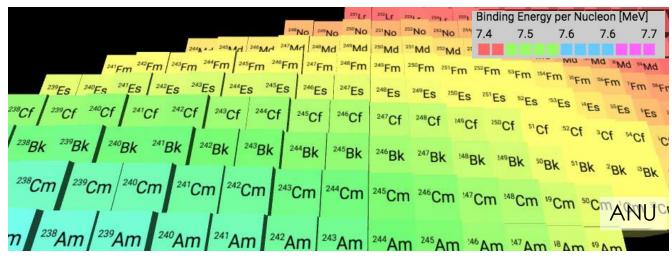
Born in Regina, Canada in 1935, Murray Martin received his B.A. and M.A. in experimental physics from the University of Saskatchewan and his PhD in theoretical nuclear physics in 1962 from McMaster Univ. His thesis was entitled "A Study of the Low-Lying Excited Levels in the Even Lead Isotopes". He joined the NSF Data Project in 1962 in Washington, DC, and then followed that project as it moved to ORNL in 1964 as the Nuclear Data Project (NDP). Murray stayed with the NDP until his retirement in 1997 but resumed his work on a part-time basis in 2004 as a subcontractor to ORNL, which he continued until his last days.

Approved for public release. Distribution is unlimited

ORNL/TM-2022/1835

Guidelines for Nuclear Structure Evaluators

Murray J. Martin (ORNL/UTK)


4/26/2021

Nuclear Structure Data ENSDF Evaluations

Caroline Nesaraja

• ORNL responsibility: A=241-249 A = 69

Mass Chain	Current ENSDF Database (from NNDC website)	
241	C.D. Nesaraja. NDS 130, 183 (2015)	(Lit cut-off Sept 2015)
242	Y. A. Akovali. NDS 96, 177 (2002)	(Lit cut-off Sept 2001)
243	C.D. Nesaraja & E.A. McCutchan. NDS 121, 695 (2014)	(Lit cut-off Sept 2013)
244	C.D. Nesaraja : NDS 146, 387 (2017)	(Lit cut-off Aug 2017)
245	E. Browne & J.K. Tuli. NDS 112, 447 (2011)	(Lit. cut-off June 2010)
246	E. Browne & J.K. Tuli. NDS 112, 1833 (2011)	(Lit. cut-off Jan 2011)
247	C. D. Nesaraja : NDS 125, 395 (2015)	(Lit. cut-off Mar 2014)
248	M.J. Martin :NDS 122, 377 (2014)	(Lit. cut-off Sept 2014)
249	K. Abusaleem: NDS 112, 2129 (2011)	(Lit. cut-off Dec 2010)
69	C.D. Nesaraja : NDS 115, 1 (2014)	(Lit. cut-off July 2013)

Nuclear Structure Data **ENSDF** Evaluations

Caroline Nesaraja

	NUCLEAR D	MIA SHEETS		
Data Type	Index Page	for A=137 Nuclide	Data Type	Page
Skeleton Scheme for A=137	8		196Ba(4.p) 196Ba(x, 5He)	297
Adopted Levels Adopted Levels	0		I ¹⁷ Ba(r, r'). I ³⁷ Ba(n, r'). I ¹⁸ Ba(p, d), r He, o)	210
Adopted Levels, Gammas 1750 pf decay. PBe(225 U.X)	10	1371.s ₂₀	Condomb excitation Adopted Levels, Gumma 107 Ge a decay (9.11.3)	223 223 223

Data Type	Page	Nuclide	Data Type	Page
Skeleton Scheme for A-137	4 1		106Ba(4p)	787
	8		IMBa(x, PHe)	739
Adopted Levels			Balv.v'A.	210
Idented Levels			137 Balan vl.	216
Adapted Lines			HBa(g,d) (³ He,o)	219
Adopted Levels, Gammas	10	1371.80	Cordonals excitation	
50 8 decay.	13	77 90	Adopted Levels, Gazzman	223
3e(238U.X)	16		131 Ge a decay (9.11 h)	
	17		137 Ce z decay (34.10 h)	245
dopted Levels, Gammos	17		DOTe("B.4mr)	7.09
5b pt decay.	32		106 Ha(p.p.) E=7.0-12 MeV IAR	257
St ff in decay	20		[56]Bu(x,t)	238
Be(238U,F)	20		[16 Baly, Zuy)	. 239
all con	111		140 Ce(y.o) E-17 MeV.	255
Adopted Levels Gamman	33	III Cen	***Ce(g,o) E=17 MeV.	288
137 Te #F decay	41	58 79	Adopted Levels, Gammas	760
Np SF decay	47		DT Pr if decay.	790
Cm SF decay	40		137 Ce III decay (34.30 h)	235
Cf 8F decay	53		171 Sac 10, Sur)	390
¹⁹ U(n,Fy)			150 Te(12 C, Sur)	317
	- 61		Ce(a.y) E-thermal	
Adopted Levells, Gamman	61		106Ce(a,y) E=66 eV res	321
IS decay.	103		156Ce(a,y): Ev2 keV	
OHI Can SF decay	105		De Ce(s,y): E=24 keV	277
Cf SF decay.	108		197 Bar He 3ard E-27 MeV.	322
H(lid Nep)	110		100 Ba(e,50y) E=70 MeV.	332
Del ¹¹⁶ Ne ² Bev	111	117 W		235
C 116 X 12 C VI	114		Adopted Levels, Gumman	
Ne(n.y) E-farmal			^[57] Nd c decay	
Ne(n,X) ses.	120	137Nd	(HI,xny)	
138 Xe(d.p)	121	80 740 77	Adopted Levels, Gammas	390
139 Xe(a, 3He)	122		157 Pan st decay	433
²¹⁵ U(n.Fy)			137 Nd IT decay (1.60 o)	413
Adopted Levels, Gamons			100Mo(**)Ar.3ay)	415
137 Xe /F decay.			IH Real of S. Sey). III Prof. (IOSL, Sey). III Sho (IPF. Sey). III Te((IO Jay).	430
212 Cf SF decay.	149		110Pt(10St, 3ey), 110Sb(10F, 5ey)	432
¹⁶ Be ¹³⁶ Ne ⁸ Bey)	153		¹⁴⁰ Ce(x,7try).	. 448
136 Xe(p.p) (p.p') [AR.	116	III Pestas -	Се(я, лау)	471
135 Year He (f)	148	6171676	Adopted Levels, Gommas	454
Halif ove	110		127 Sm s decay (43 s)	
¹³⁶ Ba(d. ⁵ Ha). ²³² Th(¹³⁸ Xe, ²³¹ Ary).	160		(HL sur)	467
ZIJTh(LINXe, ZILAcy)	162	137 Sec. 1		476
238E(12C,Fy)			Adopted Levels, German	
	170	211740000	(Hepart Cl.phuy)	
Adopted Levels, Gamman 137 Ca pr. decay	170	137 Ent. 14	Adopted Levels, Geometre	403
U'La c decay	160		**Zg/ ¹¹ Se Xv)	
137 Ba IT decay (2.552 min)	501		"Ze("Se,Xy) "Mo("Fe,2opy)	490
Dir.din.de	460	197000	west carrieball	400

Nuclide	Data Type	Page	Nuclide	Data Type	Pag
24 Am ₁₅₁	Skeleton Scheme for A=246 Adopted Levels tentative Adopted Levels Grammas 244 Put py 344 Put py 450,160 py Adopted Levels Grammas 246 Put pr 460 decay Adopted Levels Grammas 246 Put pr 460 decay 250 min) 246 Run pr 460 decay 250 min) 246 Can (d.f.) 246 Can (p.1)	40 44 66 70	266 Bk ₁₄₀ 26 Cf ₁₄₅ 268 Ee ₁₄₇ 266 Fm ₁₄₀ 266 Md ₁₄₅ References	N4Com(149 gs. 211 Biy). Coolomb excitation. Adopted Levels Adopted Levels 130 Fm or decay. Adopted Levels 130 Ma o decay. Adopted Levels, Guizmato 140 Mar decay 4.4 a 130 ps. 24 A. 27(1): 1.53 a Adopted Levels 150 Bis (40 Az 7n): 4.4 s	\$4 85 85 89 90

A=240

Adopted Levels, Gammas 242UB decay Adopted Levels, Gammas ²⁴²Np β decay (2.2 min). ²⁴²Np β decay (5.5 min) ²⁴²Am ε decay (16.01 h) 245 Cm a decay 241 Pu(n,y) E=th primary y's 241 Pu(n,y) E-th secondary y's 242 Pu(d d') Coulomb excitation Adopted Levels, Gammas ³⁴²Am IT decay (141 y) 241 Am(n,y) E-th: secondary y's

Skeleton Scheme for A-242

Adopted Levels, Gammas

244Pu(18O,20Ney)

NUCLEAR DATA SHEETS

Index for A=242

Adopted Levels, Gammas . 242 Am β decay (16.01 h) 240 Cf a decay 241 Am(209 Bi, 208 Pby) 246 Es a decay Adopted Levels 242 Es n decay ²⁴⁶Md a decay (0.9 s) ²⁴⁶Md \(a\) decay (4.4 s) 174 Adopted Levels 176

241 Am(n. v) resonances 0-149 eV

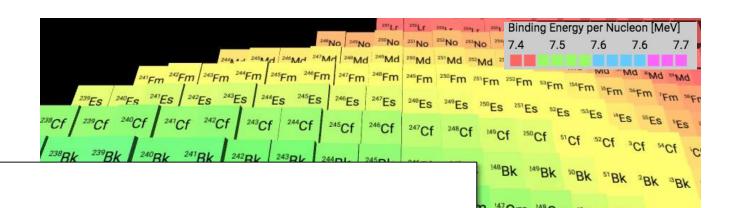
241 Am(d.p)

Coulomb excitation

A = 242

Page

Mass Chain


*137

246

242

Nuclear Structure Data ENSDF Evaluations

Caroline Nesaraja

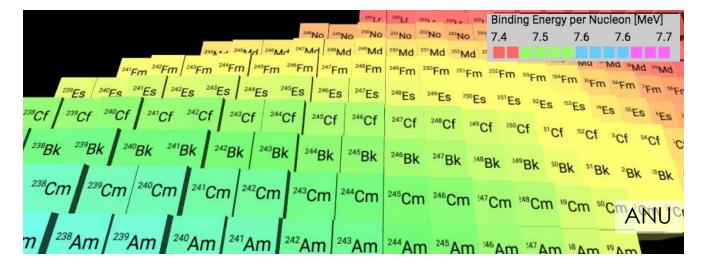
A = 137

September 2018: Submitted A=137

December 2019: Reviewer's comments received for A=137

August 2022: Resubmitted A=137

Between September 2019- August 2022 (3 years lag time)


- 9400 changes since last version
- includes ¹³⁷Cs used for cancer treatment
- now includes numerical MTAS data not previously available
- also includes results from 24 new papers since 2018
- end result is a 514-page evaluation

m 146 Am 147 Am 18 Am 19 Am

Nuclear Structure Data Related Activities

Caroline Nesaraja

Member – Int. Program Committee for ND2022 at LLNL (418 participants)

Member – NSAC Nuclear Data Subcommittee

DOE/NSF Nuclear Science Advisory Committee

15th International Conference on Nuclear Data for Science and Technology (ND2022)

ND2022 is the latest in a series of conferences on nuclear data held every three years since 1978. This conference brings together international experts involved in generating and using nuclear data for a week of presentations and in-depth discussion.

ND2022 is being organized by LLNL and will be held July 24-29

2022. The conference was originally scheduled to be held at the SAFE Credit Union Convention Center in Sacramento, California, but has been converted to a virtua event due to ongoing COVID-19 uncertainty.

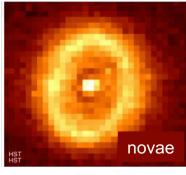
More information about the conference is available at the ND2022 website at

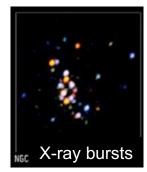
Research & Development Milissions Resources Partnerships Careers News About

Lawrence Livermore Material Laboratory - 7000 Back Normal - Developmen - CA 56000

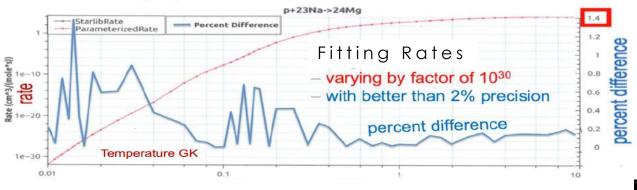
SCIENCE & TRO-FLOCKY ON A MESSAGE

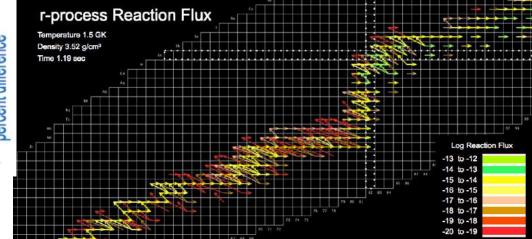
Normal Science Science - Careers Signature - CA 56000

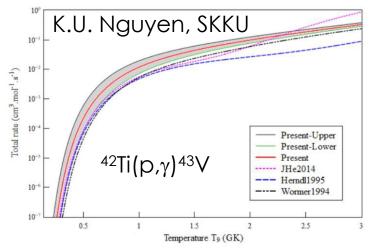

Normal Science - CA 56000

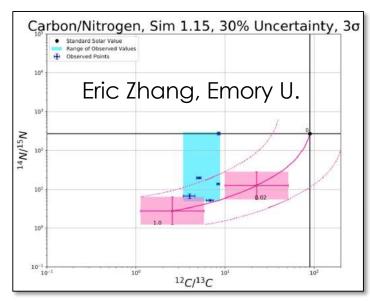

Normal Science

Nuclear Astrophysics Data









- focus on Stellar Explosions
- we closely couple data activities to measurements on unstable nuclei as recommended in NSAC LRP and listed as DOE NP milestones
- Personnel
 - Michael Smith Staff
 - Larry Zhang Student

Collaborators

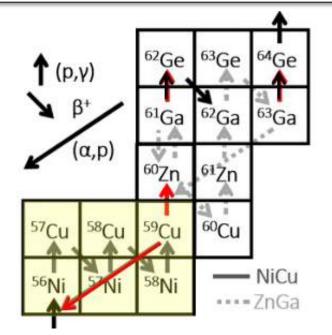
- Beihang Univ. (BUAA) in Beijing, China
 - Shisheng Zhang (Professor) theoretical nuclear physics, cross section predictions
 - B. Shao, S. Y. Zhong, Sizhe Xu (BUAA grad students) theoretical nuclear physics
- SungKyunKwon Univ. (SKKU) in Korea
 - Kyungyuk Chae (Professor) reaction assessments for astrophysics
 - C. Kim (postdoc), K.U. Nguyen (grad student) reaction assessments for astrophysics
- Emory Univ. (Atlanta)
 - Eric Zhang (undergrad) uncertainty quantification in nuclear astrophysics

Reaction Assessments

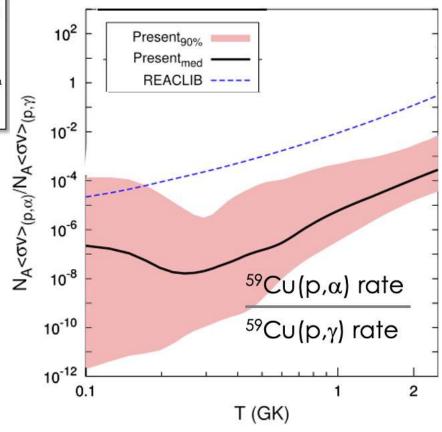
with SKKU

https://doi.org/10.3847/1538-4357/a

THE ASTROPHYSICAL JOURNAL, 929:96 (11pp), 2022 April 10 © 2022. The Author(s). Published by the American Astronomical Society.


OPEN ACCESS

Estimation of the NiCu Cycle Strength and Its Impact on Type I X-Ray Bursts


Chanhee Kim¹, Kyungyuk Chae¹, Soomi Cha², Kyujin Kwak³, Gwangeon Seong³, and Michael Smith⁴, Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea; kchae@skku.edu

2 Center for Exotic Nuclear Studies, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea

Received 2022 January 26; revised 2022 March 16; accepted 2022 March 16; published 2022 April 15

Figure 6. Strength of the NiCu cycle as a function of temperature (gigakelvin). The red band is obtained by setting the lower limit as the ratio of the low 59 Cu $(p,\alpha)^{56}$ Ni and high 59 Cu $(p,\gamma)^{60}$ Zn rates and the upper limit as the ratio of the high 59 Cu $(p,\alpha)^{56}$ Ni and low 59 Cu $(p,\gamma)^{60}$ Zn rates. The cycle strength by REACLIB and variations employed in the previous sensitivity studies are also plotted.

• Assessment of the 59 Cu(p, γ) and 59 Cu(p, α) rates for X-ray bursts

Department of Physics, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

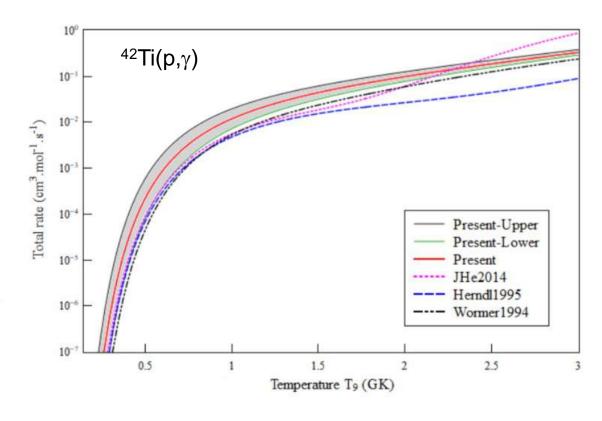
Reaction Assessments

Assessment of the reaction rates of $^{42}\text{Ti}(\mathbf{p},\gamma)^{43}\text{V}$ in type I X-ray burst

N. K. UYEN, N. N. DUY and K. Y. CHAE*

Department of Physics, Sungkyunkwan University, Suwon 16419, South Korea

M. S. SMITH

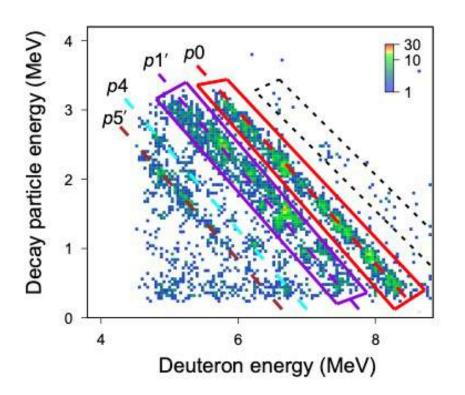

Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

L. Xayavong

Department of Physics, National University of Laos, 7322, Dongdok, Vientiane, Lao PDR

Table 2. The presently parameters for the $^{42}\mathrm{Ti}(\gamma,p)^{43}\mathrm{V}$ resonant reaction rates. The adopted proton separation energy $S_{n}=100\pm43$ keV regarding to the AME16 relied on Ref. [16].

E_x (MeV)	$E_i \; ({\rm MeV})$	τ (ps)	J^{π}	l	C^2S_p	$\Gamma_{\gamma} \ (\mathrm{eV})$	$\Gamma_p \ ({ m eV})$	$\omega\gamma~({\rm MeV})$
0.436	0.336	22.00	$(\frac{5}{2})^{-}$	3	0.150	2.99×10^{-05}	1.73×10^{-08}	5.18×10^{-14}
0.537	0.437	117.00	$(\frac{3}{2})^{-}$	1	0.046	5.63×10^{-06}	1.09×10^{-04}	1.07×10^{-11}
1.014	0.914	9.14	$(\frac{3}{2})^{-}$	1	0.002	7.20×10^{-05}	6.07×10^{-02}	1.44×10^{-10}
1.844	1.744	0.61	$(\frac{3}{2})^{-}$	1	0.905	1.09×10^{-03}	$6.74\times10^{+03}$	2.17×10^{-09}



• Assessment of the 42 Ti(p, γ) rate for X-ray burst nucleosynthesis studies

Reaction Assessments

PHYSICAL REVIEW C 105, 025801 (2022)

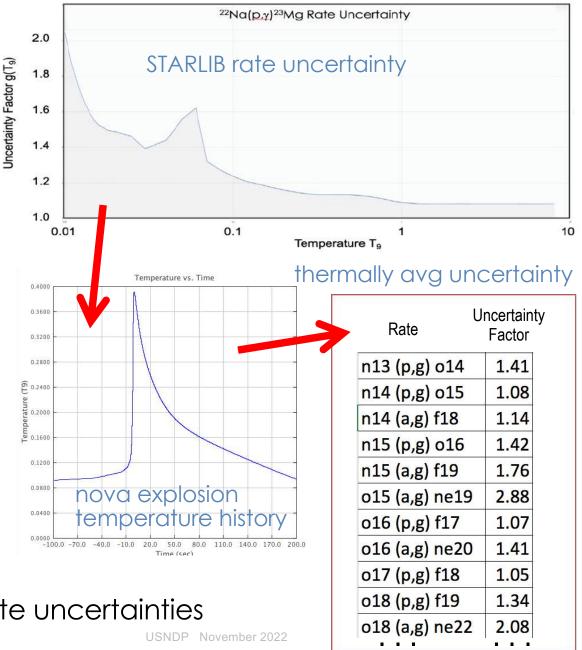
with SKKU

Chanhee Kim, K.Y. Chae et al. SKKU M.S. Smith, K. Chipps, S.D. Pain, ORNL

TABLE I. Proton branching ratios (b_p) of ²³Mg levels extracted for p0, p1', p1, p2, and p3. The excitation energy values were taken from Ref. [20]. Uncertainties include factors originated from the statistics, backgrounds, and discrepancy between isotropic and anisotropic decay. See Sec. III C for detailed argument on isotropic and anisotropic decay.

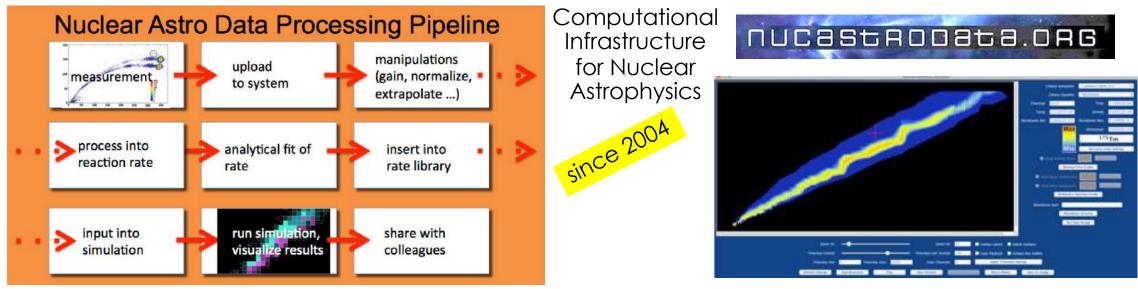
E_x (keV)	b_{p0}	$b_{p1'}$	b_{p1}	b_{p2}	b_{p3}
8044 ± 4	0.36 ± 0.11				
8170 ± 4	0.36 ± 0.12				
8330 ± 6	0.48 ± 0.15				
8436 ± 7	0.59 ± 0.18				
8770 ± 8	0.86 ± 0.27				
8924 ± 5	0.47 ± 0.15	0.26 ± 0.08	(0.13 ± 0.04)	(0.01 ± 0.01)	(0.12 ± 0.04)
9123 ± 7	0.36 ± 0.11	0.35 ± 0.11	(0.06 ± 0.02)	(0.27 ± 0.09)	(0.03 ± 0.01)
9642	0.37 ± 0.11	0.49 ± 0.15	(0.14 ± 0.05)	(0.26 ± 0.08)	(0.08 ± 0.03)

FIG. 1. Decay particle energy versus coincident reaction deuteron energy plot for all identified events. Four major diagonal bands labeled as p0, p1', p4, and p5' are evident. Each band


• Measurement of branching ratio of 24 Mg(p,d) 23 Mg levels for high-temp 22 Na(p, γ) burning

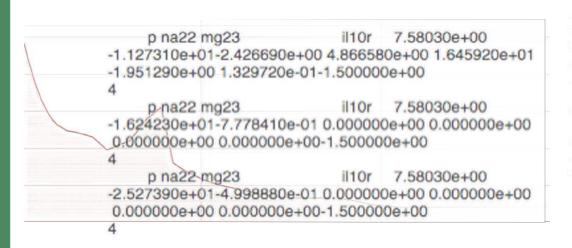
Nuclear Astrophysics Data

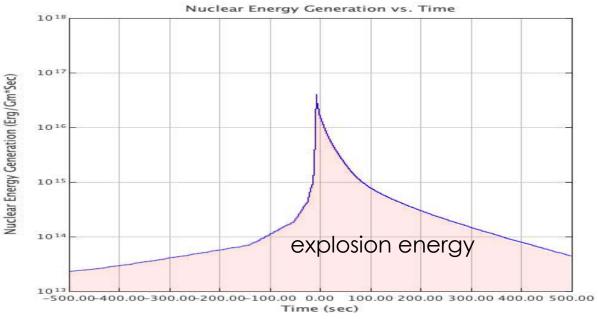
STARLIB rates


25Al(p,g)26Si 14C(a,q)180 25Mg(p,g)26Al 14C(p,g)15N 26Al(p,g)27Si 14N(a,g)18F 26Mg(p,g)27Al 15N(a,g)19F 26Si(p,q)27P 150(a,q)19Ne 27Al(p,a)24Mg 160(a,g)20Ne 27Al(p,g)28Si 160(p,q)17F 27P(p,g)28S 17F(p,q)18Ne 27Si(p,g)28P 170(p,a)14N 28Si(p,q)29P 170(p,q)18F 29P(p,q)30S 18F(p,a)150 29Si(p,q)30P 18F(p,a)150 30S(p,q)31Cl 18F(p,q)19Ne 30Si(p,g)31P 180(a,q)22Ne 31Cl(p,g)32Ar 180(p,a)15N

31P(p,a)28Si 180(p,g)19F 31P(p,a)28Si 19Ne(p,q)20Na 31P(p,g)32S 20Ne(a,g)24Mg 31S(p,g)32Cl 20Ne(p,q)21Na 32Cl(p,g)33Ar 21Na(p,g)22Mg 32S(p,q)33Cl 21Ne(p,g)22Na 34Ar(p,g)35K 22Mg(p,g)23Al 35Ar(p,q)36K 22Na(p,q)23Mg 35Cl(p,a)32S 22Ne(p,g)23Na 35Cl(p,q)36Ar 23Al(p,g)24Si 35K(p,g)36Ca 23Mg(p,g)24Al 36Ar(p,q)37K 23Na(p,a)20Ne 38Ar(p,g)39K 23Na(p,g)24Mg 39Ca(p,q)40Sc 24Al(p,q)25Si 40Ca(p,g)41Sc 24Mg(a,g)28Si 24Mg(p,g)25Al

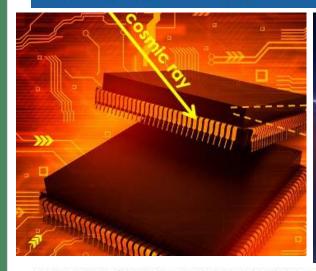
- improving thermonuclear reactions
 - processing & thermally averaging rate uncertainties


Online Software Systems

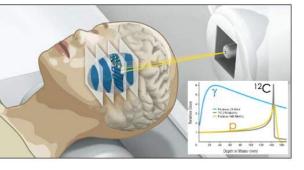


- unique set of online software systems that serve the community carrying out DOE NP-supported research programs and endorsed by NSAC LRP
- systems used by researchers in over 180 institutions in 42 countries
- systems improve return on investment of nuclear data for research projects
- many ideas for expanding and improving these services
- currently working to improve the backbone of the system

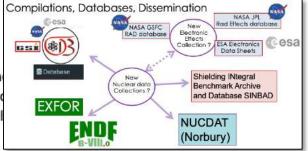
Future Possible Projects



- add uncertainties to REACLIB thermonuclear rate library
- update REACLIB content
- develop benchmark simulations and integral parameters (e.g., $k_{\rm eff}$ equivalents) to help validate nuclear astrophysics rate libraries
- explore processing (some) TALYS cross sections into REACLIB rate format


Synergistic Activities – WANDA2022

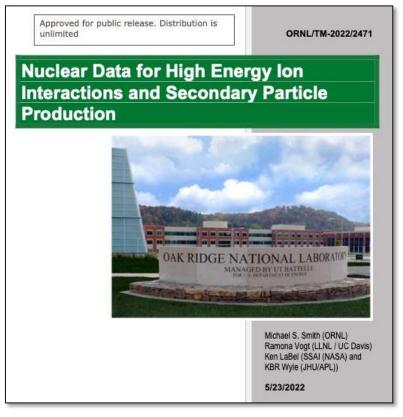
Workshop for Applied Nuclear Data Activities (WANDA 2022)



Nuclear Data for High Energy Ion Interactions and Secondary Particle Production

Chairs: K.LaBel (KBR Wyle/SSAI), M. Smith (ORNL), R. Vogt (LLNL/UC Davis)

Session Summary: The Galactic Cosmic Ray background covers a wide energy range, peaking at several hundred MeV/nucleon, but extent to and beyond 10 GeV/nucleon. The interaction of these particles with spacecraft materials and occupants creates a large and complex of that presents challenges to modeling, especially in the absence of measured data covering the entire energy range. In this session we will identify the improvements required in all components of the nuclear data pipeline to enable safe space exploration.



- Organizer for Space Session on HE Ion Interactions/Secondary Particle Production
- Detailed Session report available on OSTI

Synergistic Activities – WANDA2022

Workshop for Applied Nuclear Data Activities (WANDA 2022)

ABSTRACT	5
L INTRODUCTION	6
II. BACKGROUND	6
III. CURRENT STATUS AND NUCLEAR DATA GAPS	8
A. Experimental Facilities	8
B. Databases, Dissemination, Compilation	10
C. Reaction Models	11
D. End-User Applications	12
1. Radiation Transport	13
2. Electronics and Human Effects	14
3. Spacecraft Design	15
E. Sensitivity Studies and Uncertainty Quantification	16
IV. DISCUSSION	17
V. SUMMARY	19
VI. ACKNOWLEDGEMENTS	19
REFERENCES	20

- Organizer for **Space Session** on HE Ion Interactions/Secondary Particle Production
- Detailed Session report available on OSTI

Synergistic Activities – Machine Learning

Reviews of Modern Physics

Colloquium: Machine learning in nuclear physics

REVIEWS OF MODERN PHYSICS, VOLUME 94, JULY-SEPTEMBER 2022

Editors

Amber Boehnlein¹, Markus Diefenthaler¹, Morten Hjorth-Jensen⁴ Tanja Horn³, Michelle Kuchera³, Dean Lee⁴, Witold Nazarewicz⁴, Kostas Orginos^{1,5}, Alan Poon⁷, Michael S. Smith⁶, Xin-Nian Wang⁷, Long-Gang Pang⁸ Veronique Zieglerⁿ

- I. Introduction
- II. Machine Learning for Nu
- III. Nuclear Theory
- IV. Experimental Methods

VI. Nuclear Data

- A. Overhauling the nuclear data pipeline
- B. Improving compilations and evaluations
- C. Building emulators and surrogate models
- V. Accelerator Science and C VII. Summary and Perspectives

USNDP Task Force on Machine Learning

- share approaches & algorithms
- plan strategies for future work
- create ML toolkits for non-experts
- collaborations with ML experts
- provide input for future FOAs
- recruit students/researchers
- co-author of RMP review article on ML in Nuclear Physics
- presentations on Machine Learning in Nuclear Data at NSAC Town Hall 2022
- Recommend formation of a USNDP Task Force on Machine Learning

Synergistic Activities – Outreach & Workforce

Informal Science Education and Career Advancement

Michael S. Smith, ¹, Claudia Fracchiolla, ², Sean Fleming, Arturo Dominguez, Alexandra Lau, Shannon Greco, Don Lincoln, Eleni Katifori, William Ratcliff, Maria Longobardi, Maajida Murdock, and Mustapha Ishak 10

This document supports a proposed APS statement that encourages academic, research, and other institutions to add the participation in informal science education activities to the criteria they use for hiring and career advancement decisions. There is a prevalent attitude that the time spent by a researcher on these activities takes time away from research efforts that are more valued by their peers and their institution. To change this mindset, we enumerate the many benefits of informal science education activities to the public, to researchers, to their institutions, and to the field of physics. We also suggest aspects of these activities that may be considered by institutions in evaluating informal educational efforts for recruitment and career advancement decisions.

Outreach event with 6th graders in Rhode Island
Nov 2022

- Past Chair of APS Committee to Inform the Public (CIP) workforce development
- Elected to APS Forum on Outreach and Engaging the Public (FOEP)
- Drafting poster on Nuclear Data for DOE NP Office
- NSAC Town Hall presentations on Outreach and on Education/Training
- NSAC-ND subcommittee written input on Workforce Retention
- Remote outreach presentations on nuclear astrophysics & nuclear data given to middle school students in Rhode Island

Synergistic Activities – Outreach & Workforce

Drafting poster on Nuclear Data for DOE NP Office

