Luminosity Measurement @ EIC

W. Schmidke, BNL Det1 Far-backward Mtg. 28.04.2022

- LUMI process: Bremsstrahlung photons
- 2 methods photon measurement:
 - direct
 - pair spectrometer
- Measurement details
 - & detector technologies
- Brems. e-tagging: LUMI calibrate & verify

LUMI process: Bremsstrahlung

- Bremsstrahlung processes $ep \rightarrow ep\gamma$, $eA \rightarrow eA\gamma$:
 - $\sigma_{_{\rm BREMS}}$ precisely known from QED (~0.5%) Bethe-Heitler 1934
 - large $\sigma_{_{\rm BREMS}} \Rightarrow$ high statistics

- γ angular distribution
- strongly peaked @ beam 0°
- dominated by e-beam divergence
- diagnostic for beam steering, tuning

LUMI detector neighborhood

• Bremsstrahlung γ 's travel along e-beam 0° direction:

LUMI detectors

Two approaches complement each other

Direct y detector considerations

Environment

- In primary sync. rad. fan
- @ full L many γ 's per bunch xing

Detector components

- Sync. rad. filters (C), profile monitors monitors critical for beam diagnostics
- Single- γ calorimeter for low L
 - optimized for single EM showers
 - position hodoscope inside
- Multi- γ calorimeter for full L
- All components movable in/out beamline

<u>Multi-y calorimeter signal</u>

- \sum over many brems. spectra $E_{v} > E_{cutoff}$
- For 100's γ 's, ~ Gaussian distribution
- $L_{bunch} \propto \sum \pm_{CAL}$

Direct γ detector technology

Sync. rad.

- Filters: 1-2 X_o carbon (graphite)
- Monitors: Cerenkov quartz fibers→SiPMs
- <u>Single- γ calorimeter options</u> • W-spaghetti, rad. hard scint. fibers \rightarrow fast PMTs [ATHENA]
- <u>Multi-y calorimeter options</u> 8×8 PbWO, crystals, each 2×2 cm², 20 cm long [ECCE] ■ W-spaghetti Cerenkov quartz fibers→SiPMs [ATHENA]
 - Recall: $L_{\text{bunch}} \propto \sum \pm_{\text{CAL}}$ • For γ calorimeters calibration & stability imperative: LUMI uncertainty \propto energy calibration uncertainty

monitors

multi-γ

Pair spectrometer e[±] measurement

- Baseline: detection as @ ZEUS calorimetric e[±] energy, position
- Add multiple planes e[±] tracking:

Now a true spectrometer:

from track vertical angle, dipole $\int B \cdot dI \Rightarrow e^{\pm}$ energy

- Tracking based photon reconstruction: for acceptance correction, MC verification etc.
- Reconstructed e^{\pm} energy \Rightarrow calibrate calorimeters
- Still do LUMI measurement w/ ~100% efficient calorimeters avoid tracking inefficiencies
- Tracking adds: improved photon reconstruction calorimeter calibration pileup monitoring (e.g. multiple tracks)

Pair spectrometer considerations

Measure LUMI: **count** up+down coincidences, need <~1 per bunch ×ing <u>3 handles, control coincidence rate:</u>

• geometry:

detector transverse size & location along beamline

- dipole field strength |B|
 - geometry & |B| determine acceptance versus E_:
 - geometry fixed once installed
 - |B| is variable
 - adjust |B|, acceptance to optimize coincidence rate
- conversion probability
 - property of exit window
 - integral part of beamline vacuum system 💊

Vacuum system: baseline

Meet minimal requirements from ESR

Exit window / converter

- Must be thick enough to support vacuum x
- Geometry, composition defined by e beam pipe constraints x
- Little/no control over converter properties x
- Long window→detector distance: large error on e[±]/photon angles from multiple scattering in window x

Vacuum system: better

Extend photon beam pipe vacuum through dipole

 Doesn't support vacuum, thin as possible consistent with: mechanical rigidity, synch. rad., e-beam impedance considerations

 Least the second statement

Extra converters

- Optimize thickness, geometry, composition
- Several movable; configure for low/high lumi e.g. ep/eA
 <u>Final exit window</u>
- Thick, supports vacuum
- Multiple scattering: errors on e^{\pm} , γ angles x

Vacuum system: best

Extend photon beam pipe vacuum to detectors

Optimized vacuum system

- Minimize pair conversion fraction
- Minimize errors on e[±] track measurements

Pair spectrometer requirements

Vacuum system/converter

 Details previous slides hope to minimize coincidence rate <~1 per bunch ×ing <u>Dipole</u>

 E.g. from ZEUS @ HERA, dipole BYZ: 0.5 T × 0.6 m, Δp_T = 90 MeV

can deflect 18 GeV e[±] to detectors

Detector technologies

EM calorimeters for coincidence counting, calibration & resolution not critical. Options:

- W-scint. strip sandwich \rightarrow PMTs [ZEUS]
- W-spaghetti, rad. hard scint. fibers \rightarrow fast PMTs [ATHENA]

Tracking options:

need to resolve γ -beam profile: RMS >~ 4 mm @ detectors

- 1- 2 mm square scint. fibers \rightarrow SiPMs [ATHENA]
- 8×16 cm² AC-LGADs [ECCE] (benefit from AC-LGAD development for Roman Pots)

spec. cals. in HERA tunnel

BYZ dipole in HERA tunnel

LUMI detector technologies

- A few standard detectors: EM calorimeters, tracking planes
- High rates require radiation hard components
- Small size (10's cm), low channel count (few 100):
 - use best suited well developed technologies
 - no significant space/real estate constraints
 - limited drain on resources
- Benefit from relevant collaboration developed technologies

Readout / DAQ

- Significant info every bunch ×ing (up to 100 MHz), must read out
- Require info sorted by EIC bunch # (spin patterns)
- Use appropriate collaboration developed DAQ implementation
- Huge data volume:
 - online processing \rightarrow LUMI results
 - save relevant info for offline reprocessing (e.g. histograms)

Last Word

- Focused here on γ 's from Bremsstrahlung ep \rightarrow ep γ , eA \rightarrow eA γ
- e⁻ from Bremsstrahlung will hit e-taggers
- At low L_{inst} (<<1 e⁻ per bunch ×ing):

e⁻ in tagger, energy $E_{e} \Rightarrow$ brems. γ , $E_{\gamma} = E_{e-beam} - E_{e}$

Look in LUMI system:

• Coincidence in pair spec.?

- measure spectrometer acceptance, e.g. conversion probability
- verify simulation for acceptance correction
- Shower in γ -calorimeter?
 - calibrate γ -calorimeters

e-taggers critical for precision LUMI measurement