# **SIDIS Analysis Software for EIC**

- ATHENA Software
- SIDIS Analysis Software
- Support for the Future

Christopher Dilks 27 April 2022



# **Big Picture**



### **Delphes Fast Simulation**



https://cp3.irmp.ucl.ac.be/projects/delphes

ATHENA configuration (card): https://github.com/eic/delphes\_EIC/tree/master



# **ATHENA Full Simulation Software Stack**

- Detailed detector geometry description in <u>DD4HEP</u>, which steers the Geant4 simulations
- Reconstruction framework (<u>JUGGLER</u>) built on top of <u>GAUDI</u>, leveraging <u>ACTS</u> for tracking and <u>Tensorflow</u> for AI.
- Modular components communicate through a robust, flat data model (<u>EICD</u>, implemented using <u>PODIO</u>).
- Leverage dedicated GitLab server (<u>eicweb</u>) with CI backend for reproducible container builds (using <u>Spack</u>), and automated tests and benchmarks.





Slide adapted from Sylvester Joosten

https://indico.bnl.gov/event/14719/contributions/59799/attachments/39665/65790/2022-02-03%20Bi-weekly%20Collaboration%20Meeting.pdf

# **ATHENA SIDIS Analysis Software**



https://github.com/c-dilks/largex-eic

Contributors Duane Byer

•

# **Kinematics Reconstruction Methods**

- SIDIS kinematics depends on what is used to reconstruct quantities such as x and Q<sup>2</sup>
  - Scattered electron
  - Hadrons
  - Some mixture



$$\begin{array}{lll} i) & Leptonic \ variables & q \equiv q_l = k_2 - k_1, \ y_l = p_1.(k_1 - k_2)/p_1.k_1 \\ ii) & Hadronic \ variables [SI] & q \equiv q_h = p_2 - p_1, \ y_l = p_1.(p_2 - p_1)/p_1.k_1 \\ q \equiv q_h = p_2 - p_1, \ y_l = p_1.(p_2 - p_1)/p_1.k_1 \\ Q_{JB}^2 = (\vec{p}_{2,\perp})^2/(1 - y_{JB}), \ y_{JB} = \Sigma/(2E(k_1)) \\ \Sigma = \sum_h (E_h - p_{h,z}) \\ iv) & Mixed \ variables [SI] & q = q_l, y_m = y_{JB} \\ v) & Double \ angle \ method [S3] & Q_{DA}^2 = \frac{4E(k_2)^2 \cos^2(\theta(k_2)/2)}{\sin^2(\theta(k_2)/2) + \sin(\theta(k_2)/2) \cos(\theta(k_2)/2) \tan(\theta(p_2)/2)}, \\ y_{DA} = 1 - \frac{\sin(\theta(k_2)/2)}{\sin(\theta(k_2)/2) + \cos(\theta(k_2)/2) \tan(\theta(p_2)/2)}, \\ vi) & \thetay \ method [S4] & Q_{\theta y}^2 = 4E(k_2)^2(1 - y_{JB})\frac{1 + \cos(\theta(k_2))}{1 - \cos(\theta(k_2))}, \ y_{\theta y} = y_{JB} \\ vii) & \Sigma \ method [S5] & Q_{\Sigma}^2 = \frac{(\vec{k}_{2,\perp})^2}{1 - y_{\Sigma}}, \ y_{\Sigma} = \frac{\Sigma}{\Sigma + E(k_2)[1 - \cos(\theta(k_2))]} \\ viii) \ e\Sigma \ method [S5] & Q_{e\Sigma}^2 = Q_l^2, \ y_{e\Sigma} = \frac{Q_l^2}{sx_{\Sigma}} \end{array}$$

Prog.Part.Nucl.Phys. 69 (2013) 28-84, 1208.6087 [hep-ph]

C. Dilks

# **Data Structures**

Adage – Analysis in a Directed Acyclic Graph Environment

- Graph data structure that stores:
  - Data in arbitrary multi-dimensional bins and cuts
    - 1 multi-dimensional bin == 1 full graph path
    - Anything can be stored in each bin; currently we store a large set of histograms
  - Algorithms, executable during graph traversal
    - No nested *for* loops: algorithms can be executed on every bin or any subset of bins
    - Allows for "binning agnostic" code
- Prototype developed within Largex-eic

#### In practice:

- 1) Define your bins
- 2) Define your control nodes (algorithms)
- 3) Run





# **Data Structures**

- <u>Simple Tree</u> flat TTree, useful for quick tests etc.
  - Reconstructed SIDIS variables
  - Straightforward to connect to other analysis libraries
    - Asymmetry projections
    - Brufit (extension of Roofit)

#### Support for User Data Structures and Algorithms

- Existing data structures may not suit our future needs
- Implement your own ideas:
  - We could add "plugin" support, where the plugin would need:
    - A data structure class
    - Class methods Prepare(), Action(), Finish() = before all events, for each event, after all events
      - Similar to Juggler's initialize(), execute(), finalize()
      - Similar to Fun4all's Init(), process\_event(), End()
- Or add your own data structure to Adage, for multi-dimensional binning support

#### **Example coverage plot:** $\eta$ vs. p in (x,Q<sup>2</sup>) bins, with PID limits



# **Example benchmark plot:** pion $z_{rec} - z_{gen}$ , from fast and full simulations, in (x,Q<sup>2</sup>) bins



10

# **Example benchmark plot:** y, from fast and full simulations, in pion $(p,\eta)$ bins



11

# Software Design Principles adopted from ATHENA Software Group

#### Modularity

- One "task" = one "module"
- Modules are mutually "orthogonal"
- SIDIS SW itself is a module, reading output from fast and full simulations
- Adaptable to upstream data structure changes  $\rightarrow$  Analysis sub-classes
- Adaptable to downstream needs  $\rightarrow$  Edit existing or add new data structures

# Continuous Integration (CI)

- Support development / testing
- Automate generation of benchmark plots
- Track evolution of any plot as development proceeds

### Containerization

- Singularity / Docker image available, including dependencies such as Delphes and ROOT
- Entry point for new contributors
- Support CI

#### Version control (Git)

• Trunk-based development  $\rightarrow$  pull requests and code reviews

#### Support for the Future

- **Upstream Integration:** migrate to EICweb (gitlab)
  - 1) Connect to upstream CI pipelines
    - Example Scenario:
      - A change in detector design is being considered
      - Proposed change triggers detector CI pipelines and benchmarks
      - SIDIS analysis SW pipeline could also be triggered, providing immediate feedback of the effect of the proposed design change

#### 2) Improve Modularization and Integration

- Adage should be a separate module
- Use PODIO
- Kinematics calculations could be moved upstream (e.g., to a Juggler algorithm)

#### 3) Generalization

- We don't have to limit ourselves to SIDIS
- Already we have (some) support for jets
- Support broader needs of the collaboration
- Name change, since "largex-eic" is historical; our scope is much broader

#### **Contributions are welcome!**