
SIDIS Analysis Software for EIC

Christopher Dilks
27 April 2022

● ATHENA Software
● SIDIS Analysis Software
● Support for the Future

2

SIDIS Analysis Software

Big Picture

Event Generation

Fast simulation
(Delphes)

Full simulation
(DD4hep → Juggler)

3

Delphes Fast Simulation https://cp3.irmp.ucl.ac.be/projects/delphes

ATHENA configuration (card):
https://github.com/eic/delphes_EIC/tree/master

Pythia8

hepmc

Delphes ATHENA card

ROOT TTrees

Pythia EIC card

https://cp3.irmp.ucl.ac.be/projects/delphes
https://github.com/eic/delphes_EIC/tree/master

4Slide adapted from Sylvester Joosten
https://indico.bnl.gov/event/14719/contributions/59799/attachments/39665/65790/2022-02-03%20Bi-weekly%20Collaboration%20Meeting.pdf

ATHENA Full Simulation Software Stack

ROOT TTrees

SIDIS Analysis Software

https://eicweb.phy.anl.gov/EIC

Juggler

athena,
ip6

future:
use PODIO

https://indico.bnl.gov/event/14719/contributions/59799/attachments/39665/65790/2022-02-03%20Bi-weekly%20Collaboration%20Meeting.pdf
https://eicweb.phy.anl.gov/EIC

5

SIDIS Analysis Software

ATHENA SIDIS Analysis Software

https://github.com/c-dilks/largex-eic

Contributors
● Duane Byer
● Connor Pecar
● Sanghwa Park
● Matthew McEneaney
● Chris Dilks
+ support and help from
many others

Contributors
● Duane Byer
● Connor Pecar
● Sanghwa Park
● Matthew McEneaney
● Chris Dilks
+ support and help from
many others

Kinematics Reconstruction
● Reconstruction methods (JB, etc.)
● Boosts
● Provides access to all SIDIS variables

Output Data
Structures

(Adage, SimpleTree)

Post-processing,
Plots, etc.

Fast simulation
(Delphes)

Full simulation
(DD4hep → Juggler)

https://github.com/c-dilks/largex-eic

C. Dilks 6

Kinematics Reconstruction Methods

Prog.Part.Nucl.Phys. 69 (2013) 28-84, 1208.6087 [hep-ph]

SIDIS kinematics depends on what is used to
reconstruct quantities such as x and Q2

● Scattered electron
● Hadrons
● Some mixture

7

Adage – Analysis in a Directed Acyclic Graph Environment

● Graph data structure that stores:
● Data in arbitrary multi-dimensional bins and cuts

● 1 multi-dimensional bin == 1 full graph path
● Anything can be stored in each bin; currently we store a

large set of histograms
● Algorithms, executable during graph traversal

● No nested for loops: algorithms can be executed on every
bin or any subset of bins

● Allows for “binning agnostic” code

● Prototype developed within Largex-eic

z1 z2

y1 y2

Q1 Q2 Q3

x1 x2

control subloop
{Q2,x}

root node

leaf node

4D Binning in (z,y,Q2,x)

In practice:
1) Define your bins
2) Define your control nodes (algorithms)
3) Run

Data Structures

8

● Simple Tree – flat TTree, useful for quick tests etc.
● Reconstructed SIDIS variables
● Straightforward to connect to other analysis libraries

● Asymmetry projections
● Brufit (extension of Roofit)

● Support for User Data Structures and Algorithms
● Existing data structures may not suit our future needs
● Implement your own ideas:

● We could add “plugin” support, where the plugin would need:
● A data structure class
● Class methods Prepare(), Action(), Finish() = before all events, for each event, after all events

● Similar to Juggler’s initialize(), execute(), finalize()
● Similar to Fun4all’s Init(), process_event(), End()

● Or add your own data structure to Adage, for multi-dimensional binning support

Data Structures

9

Example coverage plot: η vs. p in (x,Q2) bins, with PID limits

figure from
Connor Pecar

10

Example benchmark plot: pion z
rec

–z
gen

, from fast and full simulations, in (x,Q2) bins

figure from
CI Artifacts

11

Example benchmark plot: y, from fast and full simulations, in pion (p,η) bins

figure from
CI Artifacts

12

Software Design Principles adopted from ATHENA Software Group

Modularity
● One “task” = one “module”
● Modules are mutually “orthogonal”
● SIDIS SW itself is a module, reading output from fast and full simulations
● Adaptable to upstream data structure changes → Analysis sub-classes
● Adaptable to downstream needs → Edit existing or add new data structures

Continuous Integration (CI)
● Support development / testing
● Automate generation of benchmark plots
● Track evolution of any plot as development proceeds

Containerization
● Singularity / Docker image available, including dependencies such as Delphes and ROOT
● Entry point for new contributors
● Support CI

Version control (Git)
● Trunk-based development → pull requests and code reviews

13

Support for the Future

Upstream Integration: migrate to EICweb (gitlab)

1) Connect to upstream CI pipelines
● Example Scenario:

● A change in detector design is being considered
● Proposed change triggers detector CI pipelines and benchmarks
● SIDIS analysis SW pipeline could also be triggered, providing immediate feedback of the

effect of the proposed design change

2) Improve Modularization and Integration
● Adage should be a separate module
● Use PODIO
● Kinematics calculations could be moved upstream (e.g., to a Juggler algorithm)

3) Generalization
● We don’t have to limit ourselves to SIDIS
● Already we have (some) support for jets
● Support broader needs of the collaboration
● Name change, since “largex-eic” is historical; our scope is much broader

Contributions are welcome!Contributions are welcome!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

