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SIDIS reconstruction with ATHENA full sim.

pT mean relative error, ele. method
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o With ATHENA full simulation, found electron method to break down around y =
0.05

» Radiative effects potentially more problematic when using scattered electron, or if
electron not detected



SIDIS reconstruction with ATHENA full sim.

« With ATHENA full simulation, found electron
method to break down around y = 0.05
* Methods using HFS improve performance at
large-x
* Q_Xx, g_y from HFS
e calculating g_z, g_t fromy and Q2

pT mean relative error, ele. method
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* Found HFS methods more reliable if g
determined in head-on frame, then
transformed back to lab frame, but still some
Issues

pT mean relative error, DA method pT mean relative error, JB method
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ML SIDIS reconstruction: electron correction

* Developing a machine learning approach on ATHENA/Detector
full simulation which can better combine HFS and electron for SIDIS

reconstruction

« Currently training with reconstructed particle level information
* \Want to use some graph-like architecture to represent hadronic final

state

e Some physics-motivated architectures to learn from sets of

particles have been developed

e Currently, primarily using particle flow networks (arXiv:1810.05165)

* Model built to correct electron method:
« HFS features: four-momentum
e Electron four-momentum concatenated with
latent space variables
e Learned average of Q2, x using deep
learning model (arXiv:2108.11638) also
included in latent space variables
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ML SIDIS reconstruction: electron correction

Electron method Particle flow network + electron

pT mean relative error, ele. method pT mean relative error, NN
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DIS reconstruction: electron correction
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ML SIDIS reconstruction: constraints on g

 Combining ML methods to reconstruct DIS variables with PFN DIS methode HFS, ele. pT
« Obtaining Q2, y from learned weighted average b
e Getting g_x, g_y from a particle flow network combined with scattered I} i
electron pT Dense NN PFN
e Scattered electron variables concatenated with latent space
variables from HFS P el -
* Final layer: computes z, t components from constraints on g from Q2, y 02 y =Y
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ML SIDIS reconstruction: constraints on g
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Back-to-back dihadrons for gluon
saturation studies

Dihadron correlations used to probe gluon saturation
high-pT gluon dijet production expected to dominate at low-x
* high gluon density smears away-side jet
e Qgreater suppression of away side jet for heavier ions, scaling with A

pair
1 0,4 /0ea

A= A1/3  _pair
‘4/ o /(7(31)
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« Studied with ATHENA fast simulation by selecting high-pT trigger and
associate hadrons (as well as dijets)
« Ratio of number of back-to-back pairs to number of trigger hadrons,
for p and Au beams



ATHENA saturation projections

Joau VS X5 18x110

eAu

Dihadron cuts:
p..>2.0GeV,1.0GeV<p_<p
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Fast simulation,
scaled to 10 fbA-1

Di-jet cuts:

.. >50GeV,4.0GeV<p. . _<p._.
T,jetl T,jet2 T,jetl
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model, charged dihadron uncertainties

Pythia6 w/ NPDF, charged dihadron uncertainties

di-jet uncertainties
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 Red - ATHENA projected dihadron uncertainties on model from Phys.Rev.D. 89,
074037

e Blue - JeAu using NPDF for Au and p, dihadron uncertainties

e Black - dijet uncertainties, no model calculation available
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