

## M. Radici - A. Signori

University of Pavia & INFN

# Theory status, predictions & perspectives



SIDIS WG kickoff meeting

April 27, 2022

## 1. Unpolarized TMD

# Outline

2. Sivers TMD

3. Transversity





# **Recent fits for unpolarized TMD** $F_{UU,T} \sim f_1 \otimes D_1$

|                                | Framework         | HERMES | COMPASS | DY | Z<br>production | N of points | $\chi^2/N_{\text{points}}$ |
|--------------------------------|-------------------|--------|---------|----|-----------------|-------------|----------------------------|
| Pavia 2017<br>arXiv:1703.10157 | NLL               | ~      | ~       | 2  | ~               | 8059        | 1.55                       |
| SV 2017<br>arXiv:1706.01473    | NNLL'             | ×      | ×       | 2  | r               | 309         | 1.23                       |
| BSV 2019<br>arXiv:1902.08474   | NNLL'             | ×      | ×       | 2  | ~               | 457         | 1.17                       |
| SV 2019<br>arXiv:1912.06532    | N <sup>3</sup> LL | r      | r       | r  | r               | 1039        | 1.06                       |
| Pavia 2019<br>arXiv:1912.07550 | N <sup>3</sup> LL | ×      | ×       | r  | ~               | 353         | 1.02                       |

# **Recent fits for unpolarized TMD** $F_{UU,T} \sim f_1 \otimes D_1$

|                                | Framework         | HERMES | COMPASS | DY | Z<br>production | N of points | $\chi^2/N_{\text{points}}$ |
|--------------------------------|-------------------|--------|---------|----|-----------------|-------------|----------------------------|
| Pavia 2017<br>arXiv:1703.10157 | NLL               | 2      | ~       | 2  | 2               | 8059        | 1.55                       |
| SV 2017<br>arXiv:1706.01473    | NNLL'             | ×      | ×       | 2  | 2               | 309         | 1.23                       |
| BSV 2019<br>arXiv:1902.08474   | NNLL'             | ×      | ×       | 2  | ~               | 457         | 1.17                       |
| SV 2019<br>arXiv:1912.06532    | N <sup>3</sup> LL | ~      | r       | r  | r               | 1039        | 1.06                       |
| Pavia 2019<br>arXiv:1912.07550 | N <sup>3</sup> LL | ×      | ×       | r  | r               | 353         | 1.02                       |

6

# **TMD impact studies: SV19**

See EIC Yellow Report arXiv:2103.05419

$$\left(\frac{\zeta}{\zeta_0}\right)^{-D(b_T\mu_0,\alpha_s(\mu_0))} \xrightarrow{+g_K(b_T;\lambda)} \rightarrow \text{ evolution in } \zeta$$



Typically a function of  $b_T^2$ with one or two parameters (with variations of course)

# Huge impact of EIC SIDIS program on non-perturbative TMD evolution

# **TMD impact studies: SV19**

See EIC Yellow Report <u>arXiv:2103.05419</u>



**Figure 7.52:** Comparison of relative uncertainty bands (i.e. uncertainties normalized by central value) for up-quark unpolarized TMD PDFs (upper panel) and  $\mu \rightarrow \pi^+$  pion TMD FFs (lower panel), at different values of *x* and *z* as a function of  $k_T$ , for  $\mu = 2$  GeV. Lighter band is the SV19 extraction, darker is SV19 with EIC pseudodata.



# **Recent fits for unpolarized TMD** $F_{UU,T} \sim f_1 \otimes D_1$

|                                | Framework         | HERMES | COMPASS | DY | Z<br>production | N of points | $\chi^2/N_{\text{points}}$ |
|--------------------------------|-------------------|--------|---------|----|-----------------|-------------|----------------------------|
| Pavia 2017<br>arXiv:1703.10157 | NLL               | 2      | 2       | >  | 2               | 8059        | 1.55                       |
| SV 2017<br>arXiv:1706.01473    | NNLL'             | ×      | ×       | >  | 2               | 309         | 1.23                       |
| BSV 2019<br>arXiv:1902.08474   | NNLL'             | ×      | ×       | 2  | ~               | 457         | 1.17                       |
| SV 2019<br>arXiv:1912.06532    | N <sup>3</sup> LL | ~      | ~       | 2  | ~               | 1039        | 1.06                       |
| Pavia 2019<br>arXiv:1912.07550 | N <sup>3</sup> LL | ×      | ×       | ~  | ~               | 353         | 1.02                       |

# **Unpolarized TMDs - PV17**

see arXiv:1703.10157



# **TMD impact studies: PV17**

 $S[f_i, \mathcal{O}] = \frac{\langle \mathcal{O} \cdot f_i \rangle - \langle \mathcal{O} \rangle \langle f_i \rangle}{\delta \mathcal{O} \Delta f_i}$ 

See EIC Yellow Report <u>arXiv:2103.05419</u> and also Bissolotti's talk at DIS 2021

![](_page_10_Figure_2.jpeg)

![](_page_10_Figure_3.jpeg)

# **ATHENA - unpolarized cross section uncertainties**

![](_page_11_Figure_1.jpeg)

Adam et al. (ATHENA), ATHENA Detector proposal (2021)

![](_page_12_Figure_0.jpeg)

![](_page_13_Picture_1.jpeg)

|                                      | Framework             | SIDIS | A <sub>N</sub> - DY | A <sub>N</sub> - W/Z<br>production | A <sub>N</sub> - forward<br>EM jet | N. pts       | χ²/N.pts                        |                           |
|--------------------------------------|-----------------------|-------|---------------------|------------------------------------|------------------------------------|--------------|---------------------------------|---------------------------|
| JAM 20<br>arXiv:2002.08384           | extended parton model | >     | ~                   | ~                                  | ×                                  | 517          | 1.04                            |                           |
| PV 20<br>arXiv:2004.14278            | NLL                   | >     | ~                   | ~                                  | ×                                  | 125          | 1.08                            |                           |
| EKT 20<br>arXiv:2009.10710           | NNLL                  | >     | ~                   | ~                                  | ×                                  | 226<br>(452) | 0.989<br>( <mark>1.446</mark> ) | only SIDIS<br>+ STAR x 13 |
| BPV 20<br>arXiv:2012.05135           | no CSS<br>formalism   | >     | ~                   | ~                                  | ×                                  | 76           | 0.88                            |                           |
| TO-CA reweighing<br>arXiv:2101.03955 | extended parton model | >     | ×                   | ×                                  | ~                                  | 238          | $1.05^{+0.03}_{-0.01}$          |                           |

![](_page_14_Figure_0.jpeg)

![](_page_14_Figure_1.jpeg)

ECCE Detector proposal (2021)

![](_page_15_Picture_1.jpeg)

|                                      | Framework             | SIDIS | A <sub>N</sub> - DY | A <sub>N</sub> - W/Z<br>production | A <sub>N</sub> - forward<br>EM jet | N. pts                      | χ²/N.pts                        |                           |
|--------------------------------------|-----------------------|-------|---------------------|------------------------------------|------------------------------------|-----------------------------|---------------------------------|---------------------------|
| JAM 20<br>arXiv:2002.08384           | extended parton model | ~     | ~                   | ~                                  | ×                                  | 517                         | 1.04                            |                           |
| PV 20<br>arXiv:2004.14278            | NLL                   | >     | ~                   | ~                                  | ×                                  | 125                         | 1.08                            |                           |
| EKT 20<br>arXiv:2009.10710           | NNLL                  | >     | ~                   | ~                                  | ×                                  | 226<br>( <mark>452</mark> ) | 0.989<br>( <mark>1.446</mark> ) | only SIDIS<br>+ STAR x 13 |
| BPV 20<br>arXiv:2012.05135           | no CSS<br>formalism   | >     | ~                   | ~                                  | ×                                  | 76                          | 0.88                            |                           |
| TO-CA reweighing<br>arXiv:2101.03955 | extended parton model | ~     | ×                   | ×                                  | ~                                  | 238                         | $1.05^{+0.03}_{-0.01}$          |                           |

# **Sivers TMD - PV20**

JLAB-THY-20-3186

### The three-dimensional distribution of quarks in momentum space

Alessandro Bacchetta,<sup>1, 2, \*</sup> Filippo Delcarro,<sup>3,</sup> Cristian Pisano,<sup>4, 5, ‡</sup> and Marco Radici<sup>2, §</sup> <sup>1</sup>Dipartimento di Fisica Nucleare e Teorica, Università di Pavia <sup>2</sup>INFN Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy <sup>3</sup>Jefferson Lab, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA <sup>4</sup>Dipartimento di Fisica, Università di Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy <sup>5</sup>INFN Sezione di Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy

We present the distribution of unpolarized quarks in a transversely polarized proton in threedimensional momentum space. Our results are based on consistent extractions of the unpolarized and Sivers transverse momentum dependent parton distributions (TMDs).

$$A_{UT}^{\sin(\phi_h - \phi_S)} \propto \frac{F_{UT,T}^{\sin(\phi_h - \phi_S)}}{F_{UU,T}} \sim \frac{f_{1T}^{\perp} \otimes D_1}{f_1 \otimes D_1} \sim \frac{G_{1T}^{\perp} \otimes D_1}{f_1 \otimes D_1} \qquad \begin{array}{c} \text{CSS formalism: } f_1 \text{ and } f_{1T}^{\perp} \text{ must have same} \\ \text{non-perturbative evolution (g_{K})} \\ \text{Sivers effect depends on extraction of unpolarized TMD} \end{array}$$

PV20 first in implementing this Relies on PV17 extraction of unpolarized TMD

# Sivers TMD - PV20

### see arXiv:2004.14278

![](_page_17_Figure_2.jpeg)

![](_page_17_Figure_3.jpeg)

# **Grids for** $F_{UU,T}(x, Q^2, z, q_T/Q)$ $F_{UT,T}(x, Q^2, z, q_T/Q)$

 $q_T = P_{hT}/z$ 

Standard "table format" : ~ 80 MB (1 replica, proton / pi - plus)

200 Monte Carlo replicas x 4 target / hadron configurations

Total size ~ 60 GB (15 GB each target / hadron configuration)

# **ATHENA - Sivers asymmetry**

![](_page_19_Figure_1.jpeg)

![](_page_19_Figure_2.jpeg)

kin. cuts:  $Q^2 > 1 \text{ GeV}^2$ , 0.2 < z < 0.7, y > 0.05

assuming equal data taking times, all uncertainties scaled to L=10 fb<sup>-1</sup> at 10x275 GeV

Adam et al. (ATHENA), ATHENA Detector proposal (2021)

# Short-term goal #1

File Edit Options Buffers Tools F90 Help Q 0.0500, 0.0600, 0.0700, 0.0800, 0.0900, 0.1000, 0.1100, 0.1200, 0.1300, &0.1400, 0.1500, 0.1600, 0.1700, 0.1800, 0.1900, 0.2000, 0.2200, 0.2400, & 0.2600, 0.2800, 0.3000, 0.3200, 0.3400, 0.3600, 0.3800, 0.4000, 0.4500, & 0.5000, 0.5500, 0.6000, 0.6500, 0.7000, 0.8000, 0.9000, 1.00] OTHER CHOICES for the vectors (Alessandro & Ralf) Ralf's vector (originally w/ Q2 values) SIDIS: 02 should not be larger than s QSFvec = [1.00, 2.00, 3.00, 4.00, 5.00, & 6.00, 7.00, 8.00, 9.00, 10.00, & 12.00, 14.00, 16.00, 18.00, 20.00, & 30.00, 40.00, 50.00, 60.00, 70.00] !QSFvec = [1.00, sqrt(3.16), sqrt(10.00), sqrt(31.62), sqrt(100.00), sqrt(316.20), & !sqrt(1000.00), sqrt(3162.00), sqrt(10000.00)] !dimQSF=9 x-set by Alessandro (reduced) xvec = &![le-05, 2e-05, 4e-05, 6e-05, 8e-05, 0.0001, 0.0002, 0.0004, 0.0006, 0.0008, & [0.0001, 0.0005, & 0.0010, 0.0025, 0.0050, 0.0075, & 10.006, 0.007, 0.008, 0.009, 0.0095, & 0.01, 0.015, & 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, & 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.15, 0.2, 0.25, & 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8] extended version of Ralf's vector minus z=1 zvec = [0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, & 0.55, 0.60, 0.65, 0.70]!, 0.75, 0.80] reduced qT/Q-set proposed by Alessandro, with qT < Q qToQvec = &! [0.0001],[0.001, 0.005, 0.010, 0.025, 0.050, 0.075, 0.100, & 0.125, 0.150, 0.175, 0.200, 0.225, 0.250, 0.275, & 0.30, 0.35, 0.40, 0.45, 0.50, & 0.55, 0.60, 0.65, 0.70, 0.75, & 0.80, 0.85, 0.90, 0.95, 1.00]

Repeat the assessment of projected uncertainties for Sivers asymmetry by re-building grids for structure function with:

1- finer Q binning

2- push minimum x to lower values

 $q_T/Q$  and z vectors should be ok

# **New unpolarized MAPTMD22 fit** $F_{UU,T} \sim f_1 \otimes D_1$

|                              | Framework         | HERMES | COMPASS | DY | Z production | N of points | $\chi^2/N_{points}$ |
|------------------------------|-------------------|--------|---------|----|--------------|-------------|---------------------|
| PV 2017<br>arXiv:1703.10157  | NLL               | \$     | ~       | ~  | ~            | 8059        | 1.5                 |
| SV 2017<br>arXiv:1706.01473  | NNLL'             | ×      | ×       | \$ | >            | 309         | 1.23                |
| BSV 2019<br>arXiv:1902.08474 | NNLL'             | ×      | ×       | >  | \$           | 457         | 1.17                |
| SV 2019<br>arXiv:1912.06532  | N <sup>3</sup> LL | \$     | ~       | >  | >            | 1039        | 1.06                |
| PV 2019<br>arXiv:1912.07550  | N <sup>3</sup> LL | ×      | ×       | ~  | ~            | 353         | 1.02                |
| MAP 2022<br>in preparation   | N <sup>3</sup> LL | ~      | ~       | ~  | ~            | 2031        | 0.99                |

# New unpolarized MAPTMD22 fit: kinematics

![](_page_22_Figure_1.jpeg)

"*Global*" fit of *unpolarized TMDs* at *N3LL* accuracy

Drell-Yan / Z and SIDIS data

2031 data 21 parameters

In preparation

![](_page_23_Figure_0.jpeg)

# TMD region: low transverse momentum

![](_page_24_Figure_1.jpeg)

![](_page_24_Figure_2.jpeg)

SIDIS - TMD region 
$$P_{hT}^2/z^2 \ll Q^2$$

Let's highlight  $P_{hT}^2/z^2 \sim 0.25 \ Q^2$ 

One of the bins with highest Q:  $\begin{array}{l} \langle Q^2 \rangle = 9.78 \,\, {\rm GeV}^2 \\ \langle x \rangle = 0.149 \end{array}$ 

COMPASS unpolarized SIDIS multiplicities - arxiv 1709.07374

# MAPTMD22 : TMD region

see A. Bacchetta, recent "CLAS collaboration meeting"

MAPTMD22 implementation of TMD region for SIDIS:

$$q_T \leq Q$$
 at most

![](_page_25_Figure_4.jpeg)

Approximate region included in MAP22 fit

# **MAPTMD22 : comparison with data**

In preparation

![](_page_26_Figure_2.jpeg)

300 Monte Carlo replicas (bootstrap)

**SIDIS** data: overall satisfactory

**Drell-Yan** data: major problems with ATLAS data

# Short-term goal #2

Repeat the assessment of the theoretical vs experimental uncertainties for unpolarized SIDIS based on this new global analysis of unpolarized TMD

# Longer-term goal #1

Repeat the assessment of the theoretical vs experimental uncertainties for Sivers effect based on this new global analysis of unpolarized TMD

![](_page_28_Figure_0.jpeg)

![](_page_29_Picture_1.jpeg)

|                              | Mechanism             | Framework                | SIDIS | e+e- | p-p<br>collisions | N pts |
|------------------------------|-----------------------|--------------------------|-------|------|-------------------|-------|
| PV 2018<br>arXiv:1802.05212  | collinear DiFF        | LO                       | >     | >    | >                 | 78    |
| JAM 2020<br>arXiv:2002.08384 | TMD Collins<br>effect | generalized parton model | >     | >    | ~                 | 517   |
| MEX 2019<br>arXiv:1912.03289 | collinear DiFF        | LO                       | >     | >    | ×                 | 68    |
| CA 2020<br>arXiv:2001.01573  | TMD Collins<br>effect | generalized parton model | ~     | >    | ×                 | 76    |

![](_page_29_Picture_3.jpeg)

![](_page_30_Figure_0.jpeg)

# **Recent fits for transversity** $A_{UT}^{\sin(\phi_R + \phi_S)} \propto \frac{h_1 H_1^4}{f_1 D_1}$

![](_page_31_Picture_1.jpeg)

collinear framework

|                              | Mechanism             | Framework                | SIDIS | e+e- | p-p<br>collisions | N pts |
|------------------------------|-----------------------|--------------------------|-------|------|-------------------|-------|
| PV 2018<br>arXiv:1802.05212  | collinear DiFF        | LO                       | >     | >    | ~                 | 78    |
| JAM 2020<br>arXiv:2002.08384 | TMD Collins<br>effect | generalized parton model | >     | >    | ~                 | 517   |
| MEX 2019<br>arXiv:1912.03289 | collinear DiFF        | LO                       | >     | >    | ×                 | 68    |
| CA 2020<br>arXiv:2001.01573  | TMD Collins<br>effect | generalized parton model | >     | >    | ×                 | 76    |

# transversity impact studies: PV 18

### EIC Yellow Report arXiv:2103.05419

![](_page_32_Figure_2.jpeg)

*L*=10 fb<sup>-1</sup>, 3852 data pts, proton&<sup>3</sup>He [GeV]: 10x100

1)

2)

3)

4)

5)

6)

7)

8)

### Lattice results

| ETMC '19        | Alexandrou et al., arXiv:1909.00485                           |
|-----------------|---------------------------------------------------------------|
| Mainz '19       | Harris et al., P.R. D <b>100</b> (19) 034513                  |
| LHPC '19        | Hasan et al., P.R. D <b>99</b> (19) 114505                    |
| JLQCD '18       | Yamanaka et al., P.R. D <b>98</b> (18) 054516                 |
| PNDME '18       | Gupta et al., P.R. D <b>98</b> (18) 034503                    |
| ETMC '17        | Alexandrou et al., P.R. D <b>95</b> (17) 114514;              |
| <b>RQCD '14</b> | (E) F.K. D96 (17) 099900<br>Bali et al., P.R. D91 (15) 054501 |
| LHPC '12        | Green et al., P.R. D86 (12) 114509                            |

# New analysis: JAM 22

In preparation

- compatible with Soffer bound
- fit constrained by lattice results for tensor charges

![](_page_33_Figure_4.jpeg)

![](_page_34_Picture_0.jpeg)

![](_page_34_Figure_1.jpeg)

- results compatible with Soffer bound
- compatibility with lattice by construction
- tension with DiFF extraction more pronounced

 $\delta u$  and  $\delta d$  Q<sup>2</sup>=4 GeV<sup>2</sup>

- *δ*u= 0.74 0.11
- δ**d**= -0.15 0.12

g⊤= 0.89 0.06

35

![](_page_35_Picture_0.jpeg)

Update the assessment of the theoretical vs experimental uncertainties for transversity extraction with both Collins and DiFF methods