Summary of work done from the ATHENA proposal

EIC Detector-1 Inclusive Group Kick-off meeting 9 May 2022

Paul Newman (Birmingham) with Barak Schmookler (UC Riverside), Qinghua Xu (Shandong)

General Framework / Strategy

- Meetings every 2 weeks in steady-state
- Attendees were conveners + a couple of students + conveners from other physics / simulation groups + management representation + occasional visitors (typically <10 people)
- Work for proposal was done by a small number of ATHENA colleagues + strong external collaborators (for PDF fitting)
- Tasks:
- Evaluating technical performance of ATHENA
- Testing simulation / software updates
- Further evaluating physics performance / motivation
- Work continued after proposal completion, based on 3 abstracts submitted to DIS'22

DIS'22 Abstracts

1) Kinematic Reconstruction for inclusive scattering at EIC-ATHENA [ATHENA standalone]

2) Proton and Nuclear Collinear PartonDensities at the Electron Ion Collider usingSimulated ATHENA Data[with external colleagues from fitting groups]

3) Probing Nucleon Spin Structure withInclusive DIS at EIC-ATHENA[with external colleagues from fitting groups]

Each topic had a (separate) write-up in the proposal supplementary material

Performance with `Fully' Simulated Data

<u>π/e Background Contamination</u>

Acceptances

All Electrons

Resolutions <u>With 1st</u> <u>approx'n</u> <u>to Particle</u> <u>Flow</u> <u>algorithm</u>

Fit Input Data (ep)

- Detailed simulation work to optimise resolutions throughout phase-space
- \rightarrow 5 bins per decade in x and Q²
- Kinematic coverage: Q² > 1 GeV²,
 0.01 < y < 0.95, W > 3 GeV
- Lower y accessible in principle, but easier to rely on overlaps between data at different \sqrt{s}
- Highest x bin centre at x=0.815

e-beam	E p-be	eam E	\sqrt{s} (GeV)) inte. Lumi. (fb $^{-1}$)
18	2	275	140	15.4
10	2	275	105	100.0
10	1	00	63	79.0
5	1	00	45	61.0
5		41	29	4.4

- CC data also included for highest \sqrt{s}

Fit Input Data (eA)

Similar approach for eA ... Per-nucleon integrated luminosities:

5 x 41GeV:	4.4 fb ⁻¹
10 x 110GeV:	79 fb -1
18 x 110GeV:	79 fb -1

Systematic Precision

- Dominant sources at HERA were
 - Electron energy scale (intermediate y)
 - Photoproduction background (high y)
 - Hadronic energy scale / noise (low y)

- EIC will improve in all areas (e.g. dedicated ATHENA particle ID detectors allow π/e contamination at 10⁻⁶ level at low momenta)

- ATHENA systematic precision compatible with assumptions in Yellow report:

 \rightarrow 1.5-2.5% point-to-point uncorrelated

 \rightarrow 2.5% normalisation (uncorrelated between different \sqrt{s}) 6

Impact on HERAPDF2.0 Proton PDFs

- `DIS-only', HERA (or HERA+EIC/ATHENA) data
- Using xFitter framework

Impact of EIC/ATHENA on HERAPDF2.0

Fractional total uncertainties with / without EIC / ATHENA data included along with HERA

(linear x scale)

... EIC will bring significant reduction in uncertainties for all parton species at large x

Impact relative to MSHT20

Sensitivity to Low x Effects in ep?

- HERAPDF fits repeated with inclusion of log(1/x) resummation in simulated data and for fitting (NLLx via HELLx+APFEL, starting from $Q^2 = 2.5 \text{ GeV}^2$)

- EIC/ATHENA gives mild effect on gluon uncertainty at low x. Other PDFs unaffected. $\Delta \chi^2$ studies would be the obvious next step.
- Probably little or no sensitivity in ep data, due to restricted low x kinematic range compared with HERA
- Similar studies with nuclear targets will be interesting ...

Impact on Nuclear PDFs: Gluon

Projected uncertainty on gluon density of proton from ATHENA-only fit

Projected uncertainty on gluon density of (gold) nucleus from ATHENA-only fit \rightarrow ~10%

Projected uncertainty on nuclear modification factor, ATHENA-only compared with EPPS'16 → Factor ~ 2 improvement at x~0.1 (tolerances) → Very substantial improvement in newly accessed low x region¹²

Impact on Nuclear PDFs: ubar and uv

Similarly compelling improvements at low x for quark distributions

(Relative) Precision on A_{LL}

In most models, ALL becomes small in low x, low Q2 region \rightarrow Challenge to keep systematics under control

Statistical and systematic uncertainties

$|A_{LL}^p|$

The systematic uncertainty estimation includes 1.5% point-by-point uncorrelated systematic uncertainty, 5% normalization uncertainty, and an additional systematic (shift) uncertainty of 10⁻⁴ from relative luminosity. The conservative 5% normalization uncertainty includes contributions from electron beam polarization (2%), proton polarization (2%), uncertainty related with pion contamination (3%, assuming 90% electron purity), and 1-2% on detector effects.

(Relative) Precision on A_{LL}

Statistical and systematic uncertainties

 $|A_{LL}^{p}|$

EIC kinematic coverage extends down to x of 10^{-4} for Q² > 1 GeV² ...but statistical error begins to approach 100% of the asymmetry for x < 10^{-3} .

This assumes ~15 fb⁻¹ integrated luminosity and 70-80% electron and proton polarization. Many years of running with high instantaneous luminosity can help.

Impact on A_{LL}

Expected EIC experimental precision

Impact on A_{LL}

Expected EIC experimental precision

Impact on Helicity Distributions

[Re-evaluation of (pre)-Yellow Report studies, using **ATHENA** simulations]

0.150.30DSSV 14 **EIC Data Region** +ATHENA DIS $\sqrt{s} = 45 \,\mathrm{GeV}$ 0.25+ATHENA DIS $\sqrt{s} = 45 \& 29 \,\mathrm{GeV}$ $x \Delta q$ 0.10+ATHENA DIS $\sqrt{s} = 45 \& 63 \,\mathrm{GeV}$ 0.20+ATHENA DIS $\sqrt{s} = 45 \& 105 \,\mathrm{GeV}$ +ATHENA DIS $\sqrt{s} = 45 \& 140 \,\text{GeV}$ 0.150.05 $x \Delta \Sigma$ 0.10 $Q^2 = 10 \,\mathrm{GeV}^2$ 0.000.05DSSV 14+ATHENA DIS $\sqrt{s} = 45 \,\mathrm{GeV}$ 0.00+ATHENA DIS $\sqrt{s} = 45 \& 29 \,\mathrm{GeV}$ -0.05+ATHENA DIS $\sqrt{s} = 45 \& 63 \,\mathrm{GeV}$ $Q^2 = 10 \,\mathrm{GeV}^2$ -0.05+ATHENA DIS $\sqrt{s} = 45 \& 105 \,\text{GeV}$ +ATHENA DIS $\sqrt{s} = 45 \& 140 \,\text{GeV}$ -0.10-0.10 10^{-5} 10^{-3} 10^{-2} 10^{-1} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{-5} 10^{-4} xx

Impact of the EIC on polarized PDFs: DSSV

Very significant impact on polarized gluon and quark singlet PDFs using inclusive e-p only!

Impact on Helicity Distributions

(Personal) Thoughts on next steps

- Keep updating results for new Detector-1 designs and new simulation / software releases
- Make a more realistic energy flow algorithm, particularly treatment of neutrals \rightarrow overall hadronic final state reconstruction
- Investigate influence of QED radiation, especially ISR \rightarrow New Monte Carlo generators (RAPGAP or DJANGO instead of PYTHIA8?)
- Look at kinematic fitting / machine-learning reconstruction algorithms
- Physics observables ...

At technical level ...

- Merge ATHENA studies with ECCE and repeat for new detectors designs
- Make a more thorough evaluation of (some) systematic uncertainties
- Publish?