

ECCE DRICH GEOMETRY

JIN HUANG, <u>SEBASTIAN TAPIA</u>, MAY 04, 2022

dRICH in ECCE

dRICH in ECCE — Geometry

dRICH in ECCE - implementation

dRICH Core

https://github.com/eic/fun4all_eicdetectors/tree/master/simulation/g4simulation/g4drich

dRICH geometry configure from txt file

https://github.com/ECCE-EIC/calibrations/tree/main/dRICH/mapping/drich-g4model_v5.txt

Volumen definition

// aerogel :VOLU \$aerName CONS \$aerogelInRadius+0.0*mm \$aerogelOutRadius-4.9*mm \$aerogelInRadius+0.5*mm \$aerogelOutRadiu :COLOR \$aerName 0.0 1.0 1.0 0.4 :CHECK_OVERLAPS \$aerName ON // filter :VOLU \$filterName CONS \$filterInRadius \$aerogelOutRadius \$filterInRadius \$aerogelOutRadius \$acrylicFilterThic :COLOR \$filterName 0.0 1.0 0.0 0.5 :CHECK_OVERLAPS \$filterName ON ----- Overlap checks supported // spherical mirror :VOLU \$mirrorName SPHERE \$mirrorInRadius \$mirrorRadius \$mirrorPhiStart \$mirrorPhiDelta \$mirrorTheta0 \$mirrorT :COLOR \$mirrorName 0.5 0.5 0.8 1.0 :CHECK_OVERLAPS \$mirrorName ON // photo-sensor single tile :VOLU \$sensorTName BOX \$sensorTileLengthX/2. \$sensorTileLengthY/2. \$sensorTileThickness/2. \$sensorMatName :COLOR \$sensorTName 0.6 0.2 0.2 0.5 :CHECK_OVERLAPS \$sensorTName ON

GEANT4 GEOMETRY FROM TEXT DOCUMENTATION

https://geant4.web.cern.ch/sites/default/files/geant4/collaboration/working_groups/geometry/docs/textgeom/textgeom.pdf

dRICH in ECCE — implementation

Adding each part into the main volumen

	// place volumes in petals											
	:PLACE	\$aerName 1 \$p	et	alName1 R1 (ə. (ð. \$aeroge	elZ0					
:PLACE \$filterName 2 \$petalName1 R1 0. 0. \$acrylicFilterZ0												
	:PLACE	\$mirrorName 1	. \$	SpetalName2	RMIF	R \$mirror(Cente	rX 0.	\$mi	rrorCente	erZ	
	:PLACE	\$sensorTName	1	<pre>\$petalName2</pre>	R1	114.0*cm	-37.	50*cm	-33	.5651*cm		
	:PLACE	\$sensorTName	2	<pre>\$petalName2</pre>	R1	114.0*cm	-32.	50*cm	-32	.2696*cm		
	:PLACE	\$sensorTName	3	<pre>\$petalName2</pre>	R1	114.0*cm	-27.	50*cm	-31	.1689*cm		
	:PLACE	\$sensorTName	4	<pre>\$petalName2</pre>	R1	114.0*cm	-22.	50*cm	-30	.2584*cm		
	:PLACE	\$sensorTName	5	<pre>\$petalName2</pre>	R1	114.0*cm	-17.	50*cm	-29	.5343*cm		
	:PLACE	\$sensorTName	6	<pre>\$petalName2</pre>	R1	114.0*cm	-12.	50*cm	-28	.9937*cm		
	:PLACE	\$sensorTName	7	<pre>\$petalName2</pre>	R1	114.0*cm	-7.5	0*cm -	-28.	6345*cm		
	:PLACE	\$sensorTName	8	<pre>\$petalName2</pre>	R1	114.0*cm	-2.5	0*cm -	-28.	4552*cm		
	:PLACE	\$sensorTName	9	<pre>\$petalName2</pre>	R1	114.0*cm	2.50	*cm -2	28.4	552*cm		

up to \$sensorTName ~200

Snout = Petal1

Vessel= Petal2-

dRICH in ECCE — performance

7

hitPos[1]

Importing TGeo/GDML detector to Fun4All

TGeo/GDML detector should be relatively simple to import to Fun4All (digitization and reco are the harder parts). Example of ATHENA dRICH following Chris' work:

https://github.com/ECCE-EIC/analysis/blob/master/dRICH/TestImports/Fun4All_G4_dRICHImport.C

Additional slides

dRICH in ECCE — more figures

