@ @HEPSCI

PPPPPPPPPPPPPPPPPPP
OOOOOOOOOOOOOOOOOOOO

EIC Project Detector-1 . InfrasTrucrure
“We need

areal name”

JANAZ

June 29, 2022

David Lawrence JLab

EICUG/CompSW WG Joint meeting

EXPEerimenTal PHYSICS

@ Purpose of the “framework” @VEPSCI

SOFTWare anb COmPUTING
EIC Project Detector-1 INFrasTrucTure
“We need areal name”

Algorithm .
a Algorithm

Met ——
- @@%-----
Det1 Hits o
Det2 Hits
Det3 Hits Algorithms transform data from one form to another.

The most basic job of the framework is to organize many
algorithms and apply them to the data.

Event/TimeSlice

Modularity is critical for a large project with many authors

The framework needs to provide more though:
e standardized way to configure algorithms
e standardized control over local resources (CPUS, GPUS)
e Geometry, calibration, alignment, ... services

@ The JANA Framework &EePsc

EXPEerimenTal PHYSICS
SOFTware anb COmPUTING

EIC Project Detector-1 - @ JANA is a multithreaded framework project with nearly 2 decades of nerasTrucTure
experience behind it

e JANAZ2 is a rewrite incorporating more modern coding and CS practices and

improving on the original using lessons learned
o Streaming DAQ and Heterogeneous hardware support strongly considered in redesign

e JLabis ready to commit ~1 FTE to feature development, support and

implementation in the EIC software stack
o Nathan Brei, David Lawrence, Dmitry Romanov, + others in EPSCI/EIC
o Very interested in elevating this project to include community involvement

Projects using JANA

o GlueX

e INDRA-ASTRA (near-realtime calibrations using Al/ML)
e BDX

e TriDAS (+ERSAP) + JANA2 Streaming DAQ

lé\ﬁ Large experiments have complex call graphs &¥ePsc

EXPEerimenTal PHYSICS
SOFTWare anb COmPUTING
INFrasTrucrture

EIC Prolecf Detector-1

‘Weineed arcalname* GIueX Reconstructlon automated rendermg via janadot plugin
- — 7’ SV R —— e AUANSSSS T o 27T s s s N
N\\Vsans - = iy E 5 ___‘ '8! i

Run 42513; Y

Physics Production mode Trigger: FCAL BCAL PS m9.conf

setup: hd all.tsg /
0/90 PERP 90 \ / \ e

«—
JD70-100 58um rackTimeBase

34902409.47 s (69.9%)

TPOL Be 75um Ry
beam looks stable DTrackWireBased Is 1594007 calls
11250378 75 s (22.5%) Pl

Aﬂ calls \\§<

@ Large experiments have complex call graphs & #EPSCI

EXPEerimenTal PHYSICS
SOFTWare anb COmPUTING

EIC Project Detector-1] INFrasTrucTure
We'need areal name* GlueX Reconstruction - automated rendering via janadot plugin

L — 7 ~ S] RSN 12

Modular design: Y
e Factories (algorithms) need to know what they depend on /
DTrackTimeBased [
e Factories do not need to know what depends on them sl ol
e Dependencies do not need to be specified at higher level . e

l’éo\m JANA2 arrows separate &HEPSCI

PPPPPPPPPPPPPPPPPPP

Sequential and Parallel tasks == S Lo

EIC PrOJect Defector 1

eal name”

e CPU intensive event reconstruction will be done as a parallel arrow

e Other tasks (e.g. I/0) can be done as a sequential arrow
e Fewer locks in user code allows framework to better optimize workflow

sequential parallel sequential
arrow arrow arrow

g

EIC Prolecf Detect

“We need areal name”

Det A f\ f\

Deti

Recon. Tracks

Streaming Data &HEPSCI

EXPEerimenTal PHYSICS
SOFTWare anb COmPUTING
INFrasTrucrture

event
selection

or- 1
strawman example:

arrow

NS W B

“event t1eN” “event t2e1” | event t2e2” |

- > | ¢ -
“time slice 1” “time slice 2”
® Stream comes in the form of large time slices which may contain many events
e Arrow/queue system naturally supports one-to-many transformations
e Used in (ERSAP+) TriDAS + JANA2 system in Hall-B/Hall-D
e Used in INDRA-ASTRA Al/ML near-realtime calibration project

A &HepPscl
@ Factory Model

FACTORY HETeRt

(algorithm)

EIC Project Detector-1
“We need I name”

MANUFACTURE FACTORY

\NO
n
?

e A0

ANUFACTURE

YES

STOCK

o/

Data on demand = Don’t do it unless you need it

Stock = Don’t do it twice > Conservation
of CPU cycles!

@ Complete Event Reconstruction in JANA @EPSCI

SOFTWare anb COmPUTING
INFrasTrucrture

EIC Project Detector-1

“We need areal name”

Framework has a layer that

HDDM File . .
EVIO File ——— directs object requests to the
ET system factory that completes it
Web Service

Multiple algorithms
(factories) may exist in the
same program that produce
the same type of data

objects
Event .
This allows the framework
Processor . .

_ to easily redirect requests to
User supplied code alternate algorithms
Fill histograms specified by the user at run

Write DST P y ,
L3 trigger time

9/25/15 9

EXPEerimenTaLl PHYSICS
SOFTWare anb COmPUTING
INFrasTrucrture

@ Multi-threading @ epPsc

EIC Project Detector-1

“We need areal name”

® Fach thread has a complete set
of factories making it capable of
completely reconstructing a single
event/slice

® Factories only work with
other factories in the same
thread eliminating the need for

expensive mutex locking within Event
. ven
the factories
Processor

e All events are seen by all
Event Processors (multiple
processors can exist in a
program)

10

@ @@EPSCI

[]
BaSIC data access ppppppppppppppppppp
so
EIC Project Detector-1 i A W@ I A A CA U WVWVCSIDYYSL 2222222222 InFrasTructure
“We need areal name”

auto tracks = jevent->Get<DTrack>();
for(auto t : tracks){

// -.. do something with const DTrack* t

n.b. std::vector< DTrack*> tracks;

O

EIC Project Detector-1

“We need a real name”

Boilerplate code generation &3EPSCI

EXPEerimenTaLl PHYSICS
SOFTWare anb COmpPUTING
> jana-generate.py INFrasTrucTure
Usage: jana-generate.py [-h|--help] [type] [args...]

type: JObject JEventSource JEventProcessor RootEventProcessor JEventProcessorTest JFactory Plugin Project

> jana-generate.py --help

Plugin
Create a code skeleton for a plugin in its own directory. Takes the following positional arguments:
name The name of the plugin, e.g. "trk eff" or "TrackingEfficiency"
[is_standalone] 1Is this a new project, or are we inside the source tree of an existing CMake project? (default=True)
[is_mini] Reduce boilerplate and put everything in a single file? (default=True)
[include_root] Include a ROOT dependency and stubs for filling a ROOT histogram? (default=True)

Example: ‘jana generate.py Plugin TrackingEfficiency 1 0 0°

> jana-generate.py Plugin DaveTest
> 1ls DaveTest/

CMakeLists.txt DaveTest.cc

> mkdir DaveTest/build

> cd DaveTest/build/

> cmake

> make install

[50%] Building CXX object CMakeFiles/DaveTest_plugin.dir/DaveTest.cc.o
[100%] Linking CXX shared library DaveTest.so

[100%] Built target DaveTest_ plugin

Install the project...

-- Install configuration: ""

-- Installing: /Users/davidl/builds/JANA2/JANA2/plugins/DaveTest.so

PPPPPPPPPPPPPPPPPPP
OOOOOOOOOOOOOOOOOOOO

EIC Project Detector-1 . InfrasTrucrure
“We need

areal name”

@ Heterogeneous Hardware Support ghepPsCi

recon recon
arrow arrow

merge
arrow
(CPU)

=

subtask
arrow
(GPU)

EXPEerimenTal PHYSICS
SOFTWare anb COmPUTING

EIC Project Detector-1 OS, chip type, memory architecture, and nature of job all can affect InFrasTrucTure
‘e need arealnome? which model yields optimal performance

@ Multiple Affinity and Locality strategies @ EPSCI

JANA [Test Scaling Test - 2021-01-13 05:26:55 JANA [Test Scaling Test - 2021-01-13 05:26:55 JANA JTest Scaling Test - 2021-01-13 05:26:55 JANA JTest Saling 6t - 2021.01-13 05:26:55 JANA [Test Scaling Test - 20210113 05:26:55

350

[

50! enum class

w
A
§ @

E E E g i g : 4 AffinityStrategy {

g " g " o oi7 A e | None

B g g - 4 g S MemoryBound
AGL® . ALl I, AeL3 | ./ ALY emoryBound, '
0 o 0 0 00.- ComputeBound };

128 0 tiEade

Nthréads Nthréads

JANA [Test Scaling Test - 2021-01-13 05:26:55 JANA [Test Scaing Test - 2021-01-13 05:26:55 JANA fTest Scaling Test - 2021-01-13 05:26:55 JANA [Test Scaling Test : 2021-01-13 05:26:55 JANA fTest Scaling Test : 2021-01-13 05:26:55
: ‘ 175 175! enum c.:lass
LocalityStrategy ({

o N . o 0 o o
<. <. <. = o z i Global,
23.. 2. 21, 2 r 2 s
& e & » & | & | & B Socketlocal F;

100 1 100 1 100 1 D w| & .

AlLe & . ALl AlLe | . ¢ AIL3 ol & ALY NumaDomainLocal,

o . % 0 = 0 O O CoreLocal,

Nthreads Nthreads Nthreads Nthreads Nthreads Cpulocal };
JANA [Test Scaling Test : 2021-01-13 05:26:55 JANA [Test Scaling Test - 2021-01-13 05:26:55 JANA [Test Scaling Test - 2021-01-13 05:26:35 JANA [Test Scaling Test : 2021-01-13 05:26:35 . JANA [Test Scaling Test : 2021-01-13 05:26:5%
350 350 350 175 175 |)

~N

. -

= N . w . N . w . . i
= . s = Si-l A Configurable at run
2 23, 21 8 ¥, 23 ; . . \
& e . e . e . & e . £ time via Config.
A2L® A2L1 Az2L2 A2L3 A2LYH
Nthreads Nthreads Nthreads Nthreads Nthreads J
-/

JANAZ2 Scaling test: PSC Bridges-2 RM Two AMD EPYC 7742 CPUS (128 physical cores)

O

EIC Project Detector-1

“We need a real name”

Program Name:

host:

PID:

Number of Events:
Avg. Rate (Hz):

Rate (Hz):

Number of Threads:
CPU Total Usage (%):
CPU idle (%):

CPU nice (%):

CPU system (%):
CPU user (%):

RAM total (GB):

RAM avail. (GB):
RAM free (GB):

RAM used this proc (GB):

Num. threads

o]]

Inspection Tools

JANAcp
jana2.jlab.org
21793

185

3.24458
3.99914

1

15.5259
84.4741

0

1.00167
14.5242
32

26.555
19.9073
0.0263906

JANA Status/Control GUI

JANA Status/Control GUI

Factories

Factoryname | Factorytag |

JTestDisentangler
JTestTracker

Quit Remote

Debugger
|

Quit

> jana -Pplugins=JTest, janacontrol

> jana-control.py

[--host host]

[--port port]

Program Name: janacp
host: jana2.jlab.org
PID: 21793
Run Number: 1
Event Number: 289

@HEPSCI

EXPEerimenTal PHYSICS
SOFTware anb COmPUTING
INFrasTrucrTure

JANA Debugger - o x

JANA Debugger

Factories JTestTrackData 0x7f6e2c0027c0 (JTestTrackData)

Factoryname | Factory{ || Address | [Name value| _ Type Y
JFactoryT<|TestEntangledEventData> 0x7f6€2c0027c0 x_0 2 unknown
JTestDisentangler x1 2 unknown
JFactoryT</TestHistogramData> X2 2 unknown
JTestTracker x5 2 unknown
x4 2 unknown

7 7 7

M ~ N = N =
Run/Stop

Stop Run
Next Event

Close

€=m Add janacontrol plugin to any process

¢ Run GUI from remote (or same) node

EXPEerimenTaLl PHYSICS
SOFTWare anb COmPUTING
INFrasTrucrture

@ JANA Command Line Debugging w/ gdb @Epsci

EIC Project Detector-1 -

“We need areal name” de[@jmz:JANA 3 o x
File Edit View Search Terminal Help
Class name: JTestParser .
Sequential: @ Certain JANA

methods are written
with the intention of
being called from
JANA: h debugger.

JANA: [INFO] Status: © events processed 0.0 Hz (0.0 Hz avg)

... This allows easier

m; PrintEvent R A ; }] browsing from the

p PrintFactories ilter level <- {0,1,2,3 ;

pfd PrintFactoryDetails fac idx frgmeworkpomt of of
po PrintObjects fac idx view.
po PrintObject fac idx obj idx

pfp PrintFactoryParents fac idx

pop PrintObjectParents fac_idx obj idx

poa PrintObjectAncestors fac idx obj idx

vt ViewAsTable

vi ViewAsJson

X Exit

h Help

@ Example with Geometry Service g&EPscl

https://github.com/faustus123/EIC JANA Example ST AN CometTinG

EIC Project Detector-1

“We need areal name”

requests start with
higher level objects and
propagate to lower level
objects

@

)

Wouter suggested example:

“...[take] a collection of hits and
selecting those hits that are on
a particular endcap tracking
detector and have a position
outside a minimum radial
range.”

INFrasTrucrture

EndCapProcessor

—— e —

|
; [EEndCapHit]
\

e P — .

—— o e e o oy

\

/7
,’p/ugin[EEndCapDigiHit } \

data propagates from
lower level objects to
higher level objects

e e e e = o

https://github.com/faustus123/EIC_JANA_Example

o JFactory_EEndCapH

EIC Project Detector-1

“We need areal name”

it g3EPSCI

EXPerimenTaLl PHYSICS
SOFTWare anb COmPUTING
INFrasTrucrture

Py
Z
9
4

5

~J

o o

w

NN RN NN - -
=~ N = C

o

%)

#ifndef _JFactory_EEndCapHit_h_ 3
#define _JFactory_EEndCapHit_h_

#include <JANA/JFactoryT.h>
#include <ExampleDD&4HepService/ExampleDD4HepService.h>
#include "EEndCapHit.h"

class JFactory_EEndCapHit : public JFactoryT<EEndCapHit> {
// Insert any member variables here

public:
JFactory_EEndCapHit();
void Init() override;
void ChangeRun(const std::shared_ptr<const JEvent> &event) override;
void Process(const std::shared_ptr<const JEvent> &event) override;
protected: 3
double min_radius;

const ExampleDD4HepService *geomservice=nullptr;

void JFactory_EEndCapHit::Init() {
5 auto app = GetApplication();

// Just for fun, create a configuration parameter named

8 // EndCap:min_radius so we can set the threshold at run time.
min_radius = 15.0;

0 app->SetDefaultParameter("EndCap:min_radius”, min_radius, "The mini

N
2

2 Acquire geometry service pointer (see ExampleDD4HepService plugin)
geomservice = app->GetService<ExampleDD4HepService>().get();

W W oW RN NN NN
¢ > O p ~

w

boilerplate

[added for this example

}; J

#endif // JFactory EEndCapHit_h

0 JFactory EEndCapHit::Process @¥EPSCI

EXPerimenTaLl PHYSICS
SOFTWare anb COmPUTING

EIC Project Detector-1 i //———-mmmmmmeem e INFrasTrucTure
“We need a real name” 45 // Process
o [m—————————— e e e
47 void JFactory_EEndCapHit::Process(const std::shared_ptr<const JEvent> &event) {
49 JFactories are local to a thread, so we are free to access and modify
50 member variables here. However, be aware that events are _scattered_ to
5 different JFactory instances, not _broadcast_: this means that JFactory
52 instances only see _some_ of the events.
53
54 // The EEndCapDigiHit objects are made by a factory in the EICRawData plugin.
55 // That factory uses the low-level EASIC_hit objects coming from the event source
56 auto endcapdigihits = event->Get<EEndCapDigiHit>();
58 // Loop over the EEndCapDigiHit objects and create calibrated hits
59 // objects with geometry info.

60 std: :vector<EEndCapHit *> hits;
61 for(auto digihit : endcapdigihits){

auto pos = geomservice->GetVTXPixellLocation(digihit->layer, digihit->chip, digihit->pixel);
6 auto r = pos.Perp();
if(r > min_radius){

auto hit = new EEndCapHit();

68 hit->x = pos.X();

69 hit->y = pos.Y();

hit->z = pos.Z();

71 hit->t = ((double)digihit->t - 125.0)%2.50E-1; // Here we would apply calibrations read from DB
72 hits.push_back(hit);

7 }

7 }

76 Publish outputs
77 Set(hits);

// n.b. if we created additional types of objects we could also add them to the event using event->Insert())

O

EIC Project Detector-1

“We need areal name”

class ExampleDD4HepService: public JService {

public:

private:

// Constructor
ExampleDD4HepService()=default;

ExampleDD4HepService

// The geometry service needs to be sensitive to the exact data being processed since subtle
// alignment changes or even significant changes to the detector could appear between one

// data set and the next. The most versatile system would allow data from multiple different
// geometry definitions to exist at the same time.

// For this to return the correct geometry, it needs information from the data stream itself
// on when it was acquired so it can access the correct DB. I do not try and add that

// complication here right now. I do demonstrate though that the JEvent reference would be

// passed in so that the needed info can be extracted. Note that this should not be called for
// every event, but rather from the ChangeRun method of a factory or processor indicating a

// new calibration region of the stream has been reached.

const ddé4hep::Assembly* GetDD4hepAssembly(const std::shared_ptr<const JEvent> &event) const {

// Retrieve the correct Assembly based on when the given
// JEvent was acquired.

return _assembly;
}

// There is a lot of freedom in how this class could be organized. One is to simply provide a

// reference to the DD4hep Assembly object as above and let all of the algorithms speak "DD&4hep”.
// A more practical approach would be to augment that with some dedicated methods that answer

// common questions about the geometry for specific detectors. Here is an example of this:
TVector3 GetVTXPixellLocation(int layer, int chip, int pixel) const {

// This is where the code to extract the location information given the layer,chip, and pixel
// values would reside. This could either be directly from the dd4hep reference or from some
// cached value.

assert(layer>=1 && layer<=9);

double x = (double)chip*2.7; // Totally unrealistic. Just for demo
double y = (double)pixel*1.2; // Totally unrealistic. Just for demo
double z = z_layer[layer-1]; // Lookup table (this should actually be close to correct!)

EXPerimenTaLl PHYSICS
SOFTWare anb COmPUTING
INFrasTrucrture

Service is added to application with single line:

return TVector3(x, y, z);

N]

}

[

~

FENEEEENES

dd4hep::Assembly *_assembly = nullptr;

~

extern "C" {
void InitPlugin(JApplication *app) {

InitJANAPlugin(app);
app->ProvideService(std::make_shared<ExampleDD4HepService>());

double z_layer[9] = {-106.0, -79.0, -52.0, -25.0, 25.9, 49.0, 73.0, 106.0, 125.0};

oﬁ Exa m ple https://aithub.com/faustus123/EIC JANA Example

EXPEerimenTaLl PHYSICS
SOFTWare anb COmPUTING

EIC Project Detector-1 InFrasTrucrure
“We need areal name”
[XON J JANA Debugger
Program Name: JANAcp
host: Mac-mini-2
PID: 69285
Run Number: 22
Event Number: 87324
Factories EEndCapHit 0x6000004d8480 (EEndCapHit)
Factoryname Factorytag Datatype Plugin Num. Objects || _\ Address _\|Name Value Type A
JFactoryT<EASIC_hit> EASIC_hit 198 0x6000004d8300 X 16.200000 double
JFactory_EEndCapDigiHit EEndCapDigiHit EICRawData.so 17 0x6000004d8480 v 1.200000 double
JFactory_EEndCapHit EEndCapHit EndCap.so 10 0x6000004d84e0 z 125.000000 double
0x6000004d8540 t -2.250000 double
0x6000004d8600
0x6000004d8720
0x6000004d87e0
0x6000004d8960
0x6000004d8b40
0x6000004d8ccO
~] ~] | |

Run/Stop

| stopped |
Stop I Run
Next Event |
Close

https://github.com/faustus123/EIC_JANA_Example

ﬁ\ﬁ Summary &3EPSCI

EXPEerimenTal PHYSICS
SOFTWare anb COmPUTING

EIC Vr;rojegf Detector-1 JANA is a multithreaded framework project with nearly 2 decades of INFrasTrucTure
experience behind it

e JANAZ2 is a rewrite incorporating more modern coding and CS practices and

improving on the original using lessons learned
o Streaming DAQ and Heterogeneous hardware support strongly considered in redesign

e JLab is a partner lab in the EIC project and is ready to commit ~1 FTE to
feature development, support and implementation in the EIC software stack
o Nathan Brei, David Lawrence, Dmitry Romanov, + others in EPSCI/EIC
o Very interested in elevating this project to include community involvement

Github: https://qithub.com/JeffersonLab/JANA2
Documentation: https://ieffersonlab.qithub.io/JANA2/
Example project: https://github.com/faustus123/EIC_JANA_ Example

Publications:

https://arxiv.org/abs/2202.03085 Streaming readout for next generation electron scattering experiments
https://doi.ora/10.1051/epjconf/202125104011 Streaming Readout of the CLAS12 Forward Tagger Using TriDAS and JANA2
https://doi.org/10.1051/epjconf/202024501022 JANAZ2 Framework for Event Based and Triggerless Data Processing
https://doi.org/10.1051/epjconf/202024507037 Offsite Data Processing for the GlueX Experiment
https://iopscience.iop.org/article/10.1088/1742-6596/119/4/042018 Multi-threaded event reconstruction with JANA
https://pos.sissa.it/070/062 Multi-threaded event processing with JANA
https://iopscience.iop.org/article/10.1088/1742-6596/219/4/042011 The JANA calibrations and conditions database API
https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012032 JANAZ2: Multithreaded Event Reconstruction

https://arxiv.org/abs/2202.03085
https://doi.org/10.1051/epjconf/202125104011
https://doi.org/10.1051/epjconf/202024501022
https://doi.org/10.1051/epjconf/202024507037
https://iopscience.iop.org/article/10.1088/1742-6596/119/4/042018
https://pos.sissa.it/070/062
https://iopscience.iop.org/article/10.1088/1742-6596/219/4/042011
https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012032
https://github.com/JeffersonLab/JANA2
https://jeffersonlab.github.io/JANA2/
https://github.com/faustus123/EIC_JANA_Example

@ Requirements @hEpsci

EXPEerimenTal PHYSICS
SOFTWare anb COmPUTING
INFrasTrucrture

EIC Project Detector-1

“We need a real name”

e The reconstruction framework must be able to run on both simulated events and real data. Even if there may be algorithms
that use truth information (or even require truth information, initially), the reconstruction framework itself should allow for
running without truth information.

JANA's factory tag mechanism can be used to tag “TRUTH” versions of objects. The tagged versions of objects may be
requested programmatically or on a global scale at runtime via configuration parameters. Both the TRUTH tagged and the
un-tagged versions of the objects may coexist.

e The reconstruction framework must be able to take advantage of heterogeneous computing resources (multiple cores,
GPUs, etc).
JANA’'s main purpose for existence was to provide multi-threaded event reconstruction and the entire design of the
framework grows from that. Sub-tasks were added in JANAZ2 specifically to add additional heterogeneous support.

e The reconstruction framework must encourage modular approaches to algorithm development, using defined interface
layers.
JANA has a set of base classes that define the interface. Furthermore, the emphasis on a factory having one primary class
of object as its output encourages users to implement a more modular design. e.g. Track seeds can be produced in one
factory and fully fit tracks in another allowing the seed finding algorithm to be easily swapped. The framework also allows for
both types of objects to be produced in a single factory, but this design encourages the code designer to break that up into
smaller modules instead.

@ Requirements @hEpsci

EXPEerimenTal PHYSICS
SOFTWare anb COmPUTING

EIC Project Detector-1 INFrasTrucTure
“We need areal name”

e Algorithms must be implemented using the selected data model, and ensure that data (event data, geometry description,
and algorithm parameters) are kept separate from the algorithm itself.
JANA supports this style of programming. The algorithm parameters (formally Configuration Parameters in JANA) can be
set via config file or command line argument and a centrally available to all factories. Furthermore, the implementation
allows new configuration parameters to be easily deep in a factory’s user code, yet still be accessible to all JANA objects.

The event data is managed by the framework. Geometry description is provided by a JANA Service that gives access to
the underlying geometry package (e.g. DD4hep).

e Algorithms must be implemented in the framework independently from any scheduling strategies; an algorithm must not
need to know how it is orchestrated, whether it is running in parallel, in single or multithreaded mode, concurrent or not, in
online or offline analysis mode.

JANA algorithms are ignorant of this type of information which is handled at the framework level.

e The reconstruction framework must be open source, accessible to the entire community, and managed by a sustainable
core team.
JLab has committed to support JANA throughout the EIC project as a full partner lab. The source is freely available from
GitHub. The existing licence ties a copyright to JLab, but this will need to be revisited once contributions are made from
non-JLab staff. JLab is very open to moving this forward in that regard.

EXPEerimenTal PHYSICS
SOFTWare anb COmPUTING

@ Requirements @hEpsci

EIC Project Detector-1

INFrasTrucrture

“We need a real name”

The reconstruction framework must be able to pass (and add) metadata and so-called slow control information to the
output files, so input files are not needed and output files can stand on their own.

JANA allows objects of any type to be inserted into an event. Any output file writing would need to rely on tools that
interface with the Data Model and so are not explicitly part of the framework itself.

The reconstruction framework must be able to run in streaming readout mode, that is:

o with access to only parts of an event (single detector, single sector),

o with events (or parts of events) appearing out of sequence,

o individual algorithms must not rely on an algorithm-specific internal state to be able to make sense of disconnected

parts of events.

JANA's Queue/Arrow architecture supports streaming at multiple levels. In particular, it can support one to many, or
reordering algorithms in a natural way. The on demand design naturally supports processing of partial events. This is an
extremely common exercise in GlueX.

@ Additional assessment criteria @SEPSC

EXPEerimenTal PHYSICS
SOFTware anb COmPUTING

EIC Project Detector-1 INFrasTrucTure
“We need areal name”

e Amount of ‘boilerplate’ code that must be written by algorithm developers.
The jana-generate.py script generates the boilerplate code based on single or a few inputs. This includes making a
complete stand-alone plugin with CMakeLists.txt file. This makes it very easy to add new components quickly.

e Ability by the framework to avoid e.g. memory errors through interface enforcement mechanisms (e.g. const passing).
JANA passes pointers to const objects between factories and processors. This is required for reproducibility should the
order of factory calls be changed between program invocations.

e Ability for shared algorithm development between the two EIC detector collaborations (and/or outside of the EIC).
JANA factories are self contained in that they request objects and publish objects via the framework. Any detector
collaboration using the same input and output classes will be portable/sharable. Furthermore, the plugin mechanism
allows a plugin to provide one or more factories to any JANA executable. Thus, a single pre-compiled plugin can be used
in multiple experiments.

e Use of modern and sustainable coding practices, including in the code written by algorithm developers and other
contributors.
JANA is maintained in a Github repository. The issues, pull requests, and release mechanisms are used to maintain the
code. Automated builds and unit tests on multiple platforms are initiated by pull requests.

e Demonstration of performance in production environments.
GlueX.

o g3EPSCI

EXPEerimenTaLl PHYSICS
SOFTWare anb COmPUTING

EIC Project Detector-1 INFrasTrucTure
“We need areal name”

Backups

@ @HEPSCI

The following are some notes | made a while back when trying to understand SOPTWare ano ComeuTIng

INFrasTrucrture

e how JANA, Gaudi, and Fun4all approach the basic function of the framework. It

is terribly incomplete, but may give some insight so I included it here in the
backup slides.

Here | try and breakdown some example reconstruction code from ATHENA's juggler framework
based on GAUDI. At the same time | try and compare this to what an equivalent JANA2
implementation would look like.

This is the first algorithm | looked at in the ATHENA repository and can be found here:

https://eicweb.phy.anl.qov/EIC/juggler/-/blob/master/JugReco/src/components/SimpleClustering.cpp

| looked at it first since the name “SimpleClustering” seemed like a good place to start.

https://eicweb.phy.anl.gov/EIC/juggler/-/blob/master/JugReco/src/components/SimpleClustering.cpp

[&) simpleClustering.cpp [¢

#include

#include
#include
#include
#include
#include
#include
#include

#include
#include
#include

#include
#include
#include

// Event
#include
#include
#include
#include
#include

6.21 KB

3
H

<algorithm>

"Gaudi/Property.h"
"GaudiAlg/GaudiAlgorithm.h"
"GaudiAlg/GaudiTool.h"
"GaudiAlg/Transformer.h"
"GaudiKernel/PhysicalConstants.
"GaudiKernel/RndmGenerators.h"
"GaudiKernel/ToolHandle.h"

"DDRec/CellIDPositionConverter.
"DDRec/Surface.h"
"DDRec/SurfaceManager.h"

"JugBase/DataHandle.h"
"JugBase/IGeoSvc.h"
"JugBase/UniqueID.h"

Model related classes

"dd4pod/CalorimeterHitCollection.h"

"eicd/CalorimeterHitCollection.
"eicd/ClusterCollection.h"
"eicd/ProtoClusterCollection.h"

"eicd/RawCalorimeterHitCollection.h"

using namespace Gaudi::Units;

namespace Jug::Reco {

h"

h"

h"

This is a preamble to the file. Nothing remarkable here.

/*x Simple clustering algorithm.
*

32 * \ingroup reco

33 x/

34 class SimpleClustering :
public:

/

public GaudiAlgorithm, AlgorithmIDMixin<> {

DECLARE_COMPONENT (SimpleClustering) "‘——-——————————_______________________

} // namespace Jug::Reco

9 ¢lass BimpleClustering : public JFactoryT{CIuster><{\\\\\\\\\

6 extern "C" {

ki void InitPluginiJapplication *app) {

8 InitJaNaPlugin(app);

9 app->add (new JFactoryGeneratorT<SimpleClustering=());
10 }
11}

Class is defined in implementation file in a Java-like way. This may
be a stylistic choice, but definitely something allowed by GAUDI.
Without a header file, the class cannot be directly used in code
outside of this. Any use would have to come from propetrties of the
class coming through one of its base classes.

The class is declared to GAUDI by the DECLARE_COMPONENT
call at the bottom of the file. This is defined through a few files but
eventually gets to this file and the following line:

Gaudi/GaudiPluginService/include/Gaudi/PluginServiceV2.h
Registry::instance().add(id, { libraryName(), std::move(f), std::move(props)});

At this point | don’t know if that is instantiating an object of this class
or otherwise generating code that can be used to instantiate
SimpleClustering objects later.

The JANA equivalent here would be to create a class inheriting from
JFactory and then report that to JANA by instantiating a
JFactoryGenerator class via template.

JANA will use the JFactoryGenerator class to instantiate multiple
SimpleClustering objects later.

30 /*x Simple clustering algorithm.

31 *

32 * \ingroup reco

33 */

34 class SimpleClustering : public GaudiAlgorithm, AlgorithmIDMixin<> {

35 public:

36 using RecHits = eic::CalorimeterHitCollection;

37 using ProtoClusters = eic::ProtoClusterCollection; Convenience declarations

38 using Clusters = eic::ClusterCollection; Data objects in Gaudi are contained in

39 DataHandle templated classes. It looks

40 DataHandle<RecHits> m_inputHitCollection{"inputHitCollection", Gaudi::DataHandle::Reader, this}; like these wrappers are instantiated

A DataHandle<ProtoClusters> m_outputProtoClusters{"outputProtoCluster", Gaudi::DataHandle::Writer, this}; with a pointer to the algorithm object
DataHandle<Clusters> m_outputClusters{"outputClusterCollection", Gaudi::DataHandle::Writer, this}; they be/ong to.
Gaudi::Property<std::string> m_mcHits{this, "mcHits", ""}; Gaudi Property objects look to similarly wrap variables in a

class and register it with the Gaudi system. This will allow

Gaudi::Property<double> m_minModuleEdep{this, "minModuleEdep", 5.0 % MeV}; Gaudi to know and set these values externally.

Gaudi::Property<double> m_maxDistance{this, "maxDistance", 20.0 % cm};

i)) The JANA equivalent to these properties are configuration

49 /// Pointer to the geometry service . . .

. parameters. It is not clear if Gaudi expects to change these after

50 SmartIF<IGeoSvc> m_geoSvc; . .

51 event processing has started, but in JANA they are not expected to
52 // Monte Carlo particle source identifier change. A comparable JANA call would be:

53 const int32_t m_kMonteCarloSource{uniqueID<int32_t>("mcparticles")};

54 // Optional handle to MC hits double m_minModuleEdep = 5.0 * MeV;

55 std::unique_ptr<DataHandle<dd4pod::CalorimeterHitCollection>> m_inputMC; app->SetDefaultParameter(“minModuleEdep”, m_minModuleEdep, “...”);
56

b SimpleClustering(const std::string& name, ISvclLocatorkx svclLoc) t 2

58 : GaudiAlgorithm(name, svclLoc) ypo:

59 , AlgorithmIDMixin<>(name, info()) {

60 declareProperty("inputHitCollection", m_inputHitCollection, ""); Input and output objects are declared explicitly in
61 declareProperty("outputProtoClusterCollection" Cm_outputClusters,>"Output proto clusters"); the constructor. It is not clear why this is needed in
62 . declareProperty("outputClusterCollection", m_outputClusters, "Output clusters"); addition to the DataHandle constructors above.
63

StatusCode initialize() override
{
if (GaudiAlgorithm::initialize().isFailure()) {
return StatusCode::FAILURE;
}
// Initialize the MC input hit collection if requested
if (m_mcHits 1= "") {
m_inputMC =

Gaudi initialization method. This returns a value indicating if the
initialization succeeds or fails.

Here, a string property of the class is used to determine if an
input container should be made for MC hits.

std: :make_unique<DataHandle<dd4pod::CalorimeterHitCollection>>(m_mcHits, Gaudi::DataHandle::Reader, this);

}
m_geoSvc = service("GeoSvc");
if (!m_geoSvc) {
error() << "Unable to locate Geometry Service. "

<< "Make sure you have GeoSvc and SimSvc in the right order in the configuration." << endmsg;

return StatusCode::FAILURE;

}
return StatusCode: :SUCCESS;

14 wvoid SimpleClustering::Init() {

15
1e
17
18
19
20
2l
e
23
24
25

H

auto app = Getapplication();

Al Acguire any parameters
Jf app-rGetParameter{"parameter name", m destination);

fld Acguire any services
/i m service = app-sGetServicecServicels{);

fAd Bet any factory flags
ff BetFactorvFlag(JFactory Flags t::NOT _QBJECT OWNER),

JANA initialization method. Unlike Gaudi, JANA does not emit
a return value. In JANA, Init() is only called at event
processing time if/when an algorithm is first used and so it is
assumed to be required. Fatal errors in the Init() method are
expected to emit errors to the logging service and to tell the
application to quit via a call to app->Quit(). One may also
explicitly set an exit code with app->SetExitCode(val).

StatusCode execute() override

o0

85 {

&b {4 input eollections . . This is the top of the execute() method which is called for every

o const autod hits = wn_inputHitCollection.get(); event for which the algorithm is active. The first lines are used to get
88 // Create output collections . g_ : . g
89 auto& proto = *m_outputProtoClusters.createAndPut(); the inputs for the algorithm and to create the output containers for
90 auto& clusters = xm_outputClusters.createAndPut(); the algorithm.

91 // Optional MC data

92 const dd4pod::CalorimeterHitCollection* mcHits = nullptr; This mechanism uses the existence of a container that may or may
93 if (m_inputMC) { not have been created in the init() method to determine whether to
94 i = i o

r;) meHits = m inputhc-»geti); get the actual hits into the container.

96

7 std::vector<std::pair<uint32_t, eic::ConstCalorimeterHit>> the_hits;

) O W

std::vector<std::pair<uint32_t, eic::ConstCalorimeterHit>> remaining_hits;

JANA method that is called for every event.

void SimpleCluster_factory::Process(const std::shared_ptr<const JEvent> &jevent){

auto calohits = jevent->Get<DFCALHit>(); // Get input objects } Input objects obtained as vector<const DFCALHit*> calohits
2 / Create cluster objects Algorithm creates cluster objects and “Inserts” them into the event using

_ . the Insert() method. One could also fill a local std::vector<> of pointers
auto cluster = new DFCALCluster(a, b, ¢); . .
for(auto hit : myhits)cluster->AddAssociatedObject(hit); and pUb/’Sh those with the Set() method.
Insert(cluster); //pass ownership to framework
“ ¥ If the DFCALCluster class inherits from JObject, then the
: AssociatedObject mechanism can be used. This allows the framework to
know about which hit objects were used to make the cluster.

Here is a comparison with Fun4All. This is taken from the following:

https://qgithub.com/ECCE-EIC/coresoftware/blob/master/offline/packages/CaloReco/RawClusterBuilderFwd.h

| wanted to use another calorimeter clustering algorithm and this was the best | could locating with a quick
search.

To start with, | should note that some of the code dealing with this is spread over a few classes:

RawClusterDefs «— .

RawCluster Namespace. Defines RawClusterDefs::keytype
awlLlus) _ Inherits from PHObject

RawClusterContainer - Inherits from PHObject

RawClusterBuilderFwd «— Inherits from SubsysReco

https://github.com/ECCE-EIC/coresoftware/blob/master/offline/packages/CaloReco/RawClusterBuilderFwd.h

O 0 N OO U & W N =

#ifndef CALOBASE_RAWCLUSTERDEFS_H
#define CALOBASE_RAWCLUSTERDEFS_H

namespace RawClusterDefs
{

typedef unsigned int keytype;
}

#endif

This is just a namespace used to define the keytype used for the
RawCluster objects. Presumably this is useful for object persistence
since the unique id can be reproduced if the data were replayed.

JANA has removed support for object ids in JANAZ2. This is
due to almost never being used in JANA1. This is likely due to
the heavy use of pointers which also provide unique ids within
the event, but don’t require lookup tables to get at the object
data.

class RawCluster : public PHObject
{
public:
typedef std::map<RawTowerDefs::keytype, float> TowerMap;
typedef TowerMap::iterator TowerIterator;
typedef TowerMap::const_iterator TowerConstIterator;
typedef std::pair<TowerIterator, TowerIterator> TowerRange;
typedef std::pair<TowerConstIterator, TowerConstIterator> TowerConstRange;

~RawCluster() override {}
void Reset() override { PHOOL_VIRTUAL_WARNING; }

PHObject* CloneMe() const override { return nullptr; }

int isvValid() const override
{
PHOOL_VIRTUAL_WARNING;
return 0;
}
void identify(std::ostream& /xos%/ = std::cout) const override { PHOOL_VIRTUAL_WARNING; }
/*x @defgroup getters
* e
*/
//! cluster ID
virtual RawClusterDefs::keytype get_id() const
{
PHOOL_VIRTUAL_WARN("get_id()");
return 0;
}
//! total energy
virtual float get_energy() const
{
PHOOL_VIRTUAL_WARN("get_energy()");
return NAN;

14 class RawClusterContainer : public PHObject

15 |
13 FRoLic . . " The RawClusterContainer class is interesting because it really
18 :zz::: :‘:s '::z::::f ::i:;rs theitype: Balustersac e serves as a customized container class for RawCluster objects. It
35 Eisoael Nup ' const Lterstor CondETtaratEr; has §everal methods {fke Add”C.Iuste_r, getCluster, getClusters, ...
20 iypedef-stdripaireIterator, Tterators-Range; that include the word “cluster” in their names. These do not seem to
21 typedef std::pair<ConstIterator, ConstIterator> ConstRange; be doing anything special that any other container class would not
22 already be doing. It is unclear why a more general (templated)
23 RawClusterContainer() {} container class is not used which could provide more uniformity in
24 ~RawClusterContainer() override {} the code.
25
26 Vehl Besstl) wverciier n.b. getTotalEdep() looks to be the only method that has
2 20k SRS SUNs e functionality that would not be provided by a generic container
28 void identify(std::ostream &os = std::cout) const override; Y p yag
29 class.
30 ConstIterator AddCluster(RawCluster xclus);
31 : .
32 RawCluster xgetCluster(const RawClusterDefs::keytype id); In JANA’ the JFact%ry (I'e' a/go”thm)hC/aSS th?t produces thef h
33 const RawCluster xgetCluster(const RawClusterDefs::keytype id) const; data ObjeCtS OWI’IS.t em and serves the C?mbmed purpose of the
34 RawClusterContainer and RawClusterBuilderFwd classes. The
35 //' return all clusters JFactory class is actually a template itself where the template
36 ConstRange getClusters(void) const; parameter is the specific type of primary data object the factory
37 Range getClusters(void); produces,
38 const Map &getClustersMap() const { return _clusters; } n.b. More than one object type can be produced by a JFactory.
32 hap SgetClustersiap() { retum -clusters; } The supplementary types would use Insert() to add them to the
4 .

_ . , event and would no longer be owned by the factory. This would
41 unsigned int size() const { return _clusters.size(); } . . .
o 4 A make no difference to the end user. The emphasis on having a

ouble getTotalEdep() const; i i i i

43 factory produce a SI.ngl.e, primary object_type is me_ant to
44 protected: encourage modularity in the overall design by having more,

45 Map _clusters; smaller algorithms.

