
Experimental Physics
Software and Computing

Infrastructure

JANA2
June 29, 2022

David Lawrence JLab

EICUG/CompSW WG Joint meeting

Experimental Physics
Software and Computing

Infrastructure

Algorithm

L1 Objs

Purpose of the “framework”
E

ve
nt

/T
im

eS
lic

e

Det1 Hits

Det2 Hits

Det3 Hits

Meta

The most basic job of the framework is to organize many
algorithms and apply them to the data.

Algorithm

L2 Objs 4-vectors

Algorithms transform data from one form to another.

Modularity is critical for a large project with many authors

The framework needs to provide more though:
● standardized way to configure algorithms
● standardized control over local resources (CPUS, GPUS)
● Geometry, calibration, alignment, … services

Experimental Physics
Software and Computing

Infrastructure

The JANA Framework
● JANA is a multithreaded framework project with nearly 2 decades of

experience behind it

● JANA2 is a rewrite incorporating more modern coding and CS practices and
improving on the original using lessons learned

○ Streaming DAQ and Heterogeneous hardware support strongly considered in redesign

● JLab is ready to commit ~1 FTE to feature development, support and
implementation in the EIC software stack

○ Nathan Brei, David Lawrence, Dmitry Romanov, + others in EPSCI/EIC
○ Very interested in elevating this project to include community involvement

Projects using JANA
● GlueX
● INDRA-ASTRA (near-realtime calibrations using AI/ML)
● BDX
● TriDAS (+ERSAP) + JANA2 Streaming DAQ

Experimental Physics
Software and Computing

Infrastructure

Large experiments have complex call graphs

Run 42513:
Physics Production mode Trigger: FCAL_BCAL_PS_m9.conf
setup: hd_all.tsg
0/90 PERP 90
JD70-100 58um
TPOL Be 75um
beam looks stable

GlueX Reconstruction - automated rendering via janadot plugin

Experimental Physics
Software and Computing

Infrastructure

Large experiments have complex call graphs
GlueX Reconstruction - automated rendering via janadot plugin

Modular design:

● Factories (algorithms) need to know what they depend on

● Factories do not need to know what depends on them

● Dependencies do not need to be specified at higher level

Experimental Physics
Software and Computing

Infrastructure

...

sequential
arrow

parallel
arrow

sequential
arrow

queue queue

JANA2 arrows separate
Sequential and Parallel tasks

● CPU intensive event reconstruction will be done as a parallel arrow
● Other tasks (e.g. I/O) can be done as a sequential arrow
● Fewer locks in user code allows framework to better optimize workflow

Experimental Physics
Software and Computing

Infrastructure

Streaming Data
7

● Stream comes in the form of large time slices which may contain many events
● Arrow/queue system naturally supports one-to-many transformations

“event t1eN” “event t2e2”

Det A

Det B

Recon. Tracks

“time slice 1” “time slice 2”

“event t2e1”

time slices

recon
arrow

event candidates

 arrow

event
selectiontracks,

clusters
…

PID, filter
arrow

eventstime slices

Hits
…

jets,
kin. fits,

…

strawman example:

● Used in (ERSAP+) TriDAS + JANA2 system in Hall-B/Hall-D
● Used in INDRA-ASTRA AI/ML near-realtime calibration project

Experimental Physics
Software and Computing

Infrastructure

STOCK

MANUFACTURE

in
stock?

YES

NO

FACTORY

STOCK

MANUFACTURE

in
stock?

YES

NO

FACTORY

Data on demand = Don’t do it unless you need it

Factory Model

STOCK

MANUFACTURE

in
stock?

ORDER

PRODUCT

YES

NO

FACTORY
(algorithm)

Stock = Don’t do it twice Conservation
of CPU cycles!8

Experimental Physics
Software and Computing

Infrastructure

Complete Event Reconstruction in JANA

9/25/15

JANA

Event
Processor

Event
Source

HDDM File
EVIO File

ET system
Web Service

User supplied code
Fill histograms
Write DST
L3 trigger

Framework has a layer that
directs object requests to the

factory that completes it

This allows the framework
to easily redirect requests to

alternate algorithms
specified by the user at run

time

Multiple algorithms
(factories) may exist in the

same program that produce
the same type of data

objects

9

Experimental Physics
Software and Computing

Infrastructure

Multi-threading

10

Event
Processor

Event
Source

thread

thread

thread

thread

● Each thread has a complete set
of factories making it capable of
completely reconstructing a single
event/slice

● Factories only work with
other factories in the same
thread eliminating the need for
expensive mutex locking within
the factories

● All events are seen by all
Event Processors (multiple
processors can exist in a
program)

Experimental Physics
Software and Computing

InfrastructureBasic data access

auto tracks = jevent->Get<DTrack>();

for(auto t : tracks){

 // ... do something with const DTrack* t

}

std::vector<const DTrack*> tracks;n.b.

Experimental Physics
Software and Computing

Infrastructure> jana-generate.py
Usage: jana-generate.py [-h|--help] [type] [args...]
 type: JObject JEventSource JEventProcessor RootEventProcessor JEventProcessorTest JFactory Plugin Project

Boilerplate code generation

> jana-generate.py Plugin DaveTest
> ls DaveTest/
CMakeLists.txt DaveTest.cc
> mkdir DaveTest/build
> cd DaveTest/build/
> cmake ..
…
> make install
[50%] Building CXX object CMakeFiles/DaveTest_plugin.dir/DaveTest.cc.o
[100%] Linking CXX shared library DaveTest.so
[100%] Built target DaveTest_plugin
Install the project...
-- Install configuration: ""
-- Installing: /Users/davidl/builds/JANA2/JANA2/plugins/DaveTest.so

> jana-generate.py --help
…
Plugin
Create a code skeleton for a plugin in its own directory. Takes the following positional arguments:
 name The name of the plugin, e.g. "trk_eff" or "TrackingEfficiency"
 [is_standalone] Is this a new project, or are we inside the source tree of an existing CMake project? (default=True)
 [is_mini] Reduce boilerplate and put everything in a single file? (default=True)
 [include_root] Include a ROOT dependency and stubs for filling a ROOT histogram? (default=True)

 Example: `jana_generate.py Plugin TrackingEfficiency 1 0 0`
…

Experimental Physics
Software and Computing

Infrastructure

Heterogeneous Hardware Support

subtask
arrow
(GPU)

split arrow

recon
arrow
(CPU)

merge
arrow
(CPU)

recon
arrow
(CPU)

Experimental Physics
Software and Computing

Infrastructure

Multiple Affinity and Locality strategies

JANA2 Scaling test: PSC Bridges-2 RM Two AMD EPYC 7742 CPUS (128 physical cores)

enum class
AffinityStrategy {

None,
MemoryBound,
ComputeBound };

enum class
LocalityStrategy {

Global,
SocketLocal,
NumaDomainLocal,
CoreLocal,
CpuLocal };

OS, chip type, memory architecture, and nature of job all can affect
which model yields optimal performance

Configurable at run
time via Config.

Parameters

1280 Nthreads

R
at

e
(H

z)

350 175

0 0

175

0

350

0

350

0

350 350 350

00 0

350 350 350

00 0

175

0

175

0

175

0

175

0

Nthreads

R
at

e
(H

z)

0 Nthreads

R
at

e
(H

z)

0 Nthreads

R
at

e
(H

z)

0 Nthreads

R
at

e
(H

z)

0

Nthreads

R
at

e
(H

z)

0Nthreads

R
at

e
(H

z)

0Nthreads

R
at

e
(H

z)

0Nthreads

R
at

e
(H

z)

0Nthreads

R
at

e
(H

z)

0

Nthreads

R
at

e
(H

z)

0Nthreads

R
at

e
(H

z)

0Nthreads

R
at

e
(H

z)

0Nthreads

R
at

e
(H

z)

0Nthreads

R
at

e
(H

z)

0

Experimental Physics
Software and Computing

Infrastructure

Inspection Tools

> jana -Pplugins=JTest,janacontrol

> jana-control.py [--host host] [--port port]

Add janacontrol plugin to any process

Run GUI from remote (or same) node

Experimental Physics
Software and Computing

Infrastructure

JANA Command Line Debugging w/ gdb

Certain JANA
methods are written
with the intention of
being called from
debugger.

This allows easier
browsing from the
framework point of of
view.

Experimental Physics
Software and Computing

Infrastructure

Example with Geometry Service

EndCapProcessor

EEndCapHit

EEndCapDigiHit

EASIC_hit

ExampleDD4HepService

requests start with
higher level objects and
propagate to lower level

objects

data propagates from
lower level objects to
higher level objects

ERawDataSource

plugin

plugin

plugin

https://github.com/faustus123/EIC_JANA_Example

“…[take] a collection of hits and
selecting those hits that are on
a particular endcap tracking
detector and have a position
outside a minimum radial
range.”

Wouter suggested example:

https://github.com/faustus123/EIC_JANA_Example

Experimental Physics
Software and Computing

Infrastructure

JFactory_EEndCapHit

boilerplate

added for this example

Experimental Physics
Software and Computing

Infrastructure

JFactory_EEndCapHit::Process

Experimental Physics
Software and Computing

Infrastructure

ExampleDD4HepService

Service is added to application with single line:

Experimental Physics
Software and Computing

Infrastructure

Example https://github.com/faustus123/EIC_JANA_Example

https://github.com/faustus123/EIC_JANA_Example

Experimental Physics
Software and Computing

Infrastructure

Summary
● JANA is a multithreaded framework project with nearly 2 decades of

experience behind it

● JANA2 is a rewrite incorporating more modern coding and CS practices and
improving on the original using lessons learned

○ Streaming DAQ and Heterogeneous hardware support strongly considered in redesign

● JLab is a partner lab in the EIC project and is ready to commit ~1 FTE to
feature development, support and implementation in the EIC software stack

○ Nathan Brei, David Lawrence, Dmitry Romanov, + others in EPSCI/EIC
○ Very interested in elevating this project to include community involvement

Publications:
https://arxiv.org/abs/2202.03085 Streaming readout for next generation electron scattering experiments
https://doi.org/10.1051/epjconf/202125104011 Streaming Readout of the CLAS12 Forward Tagger Using TriDAS and JANA2
https://doi.org/10.1051/epjconf/202024501022 JANA2 Framework for Event Based and Triggerless Data Processing
https://doi.org/10.1051/epjconf/202024507037 Offsite Data Processing for the GlueX Experiment
https://iopscience.iop.org/article/10.1088/1742-6596/119/4/042018 Multi-threaded event reconstruction with JANA
https://pos.sissa.it/070/062 Multi-threaded event processing with JANA
https://iopscience.iop.org/article/10.1088/1742-6596/219/4/042011 The JANA calibrations and conditions database API
https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012032 JANA2: Multithreaded Event Reconstruction

Github: https://github.com/JeffersonLab/JANA2
Documentation: https://jeffersonlab.github.io/JANA2/
Example project: https://github.com/faustus123/EIC_JANA_Example

https://arxiv.org/abs/2202.03085
https://doi.org/10.1051/epjconf/202125104011
https://doi.org/10.1051/epjconf/202024501022
https://doi.org/10.1051/epjconf/202024507037
https://iopscience.iop.org/article/10.1088/1742-6596/119/4/042018
https://pos.sissa.it/070/062
https://iopscience.iop.org/article/10.1088/1742-6596/219/4/042011
https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012032
https://github.com/JeffersonLab/JANA2
https://jeffersonlab.github.io/JANA2/
https://github.com/faustus123/EIC_JANA_Example

Experimental Physics
Software and Computing

Infrastructure

Requirements

● The reconstruction framework must be able to run on both simulated events and real data. Even if there may be algorithms
that use truth information (or even require truth information, initially), the reconstruction framework itself should allow for
running without truth information.
JANA’s factory tag mechanism can be used to tag “TRUTH” versions of objects. The tagged versions of objects may be
requested programmatically or on a global scale at runtime via configuration parameters. Both the TRUTH tagged and the
un-tagged versions of the objects may coexist.

● The reconstruction framework must be able to take advantage of heterogeneous computing resources (multiple cores,
GPUs, etc).
JANA’s main purpose for existence was to provide multi-threaded event reconstruction and the entire design of the
framework grows from that. Sub-tasks were added in JANA2 specifically to add additional heterogeneous support.

● The reconstruction framework must encourage modular approaches to algorithm development, using defined interface
layers.
JANA has a set of base classes that define the interface. Furthermore, the emphasis on a factory having one primary class
of object as its output encourages users to implement a more modular design. e.g. Track seeds can be produced in one
factory and fully fit tracks in another allowing the seed finding algorithm to be easily swapped. The framework also allows for
both types of objects to be produced in a single factory, but this design encourages the code designer to break that up into
smaller modules instead.

Experimental Physics
Software and Computing

Infrastructure

Requirements

● Algorithms must be implemented using the selected data model, and ensure that data (event data, geometry description,
and algorithm parameters) are kept separate from the algorithm itself.
JANA supports this style of programming. The algorithm parameters (formally Configuration Parameters in JANA) can be
set via config file or command line argument and a centrally available to all factories. Furthermore, the implementation
allows new configuration parameters to be easily deep in a factory’s user code, yet still be accessible to all JANA objects.

The event data is managed by the framework. Geometry description is provided by a JANA Service that gives access to
the underlying geometry package (e.g. DD4hep).

● Algorithms must be implemented in the framework independently from any scheduling strategies; an algorithm must not
need to know how it is orchestrated, whether it is running in parallel, in single or multithreaded mode, concurrent or not, in
online or offline analysis mode.
JANA algorithms are ignorant of this type of information which is handled at the framework level.

● The reconstruction framework must be open source, accessible to the entire community, and managed by a sustainable
core team.
JLab has committed to support JANA throughout the EIC project as a full partner lab. The source is freely available from
GitHub. The existing licence ties a copyright to JLab, but this will need to be revisited once contributions are made from
non-JLab staff. JLab is very open to moving this forward in that regard.

Experimental Physics
Software and Computing

Infrastructure

Requirements

● The reconstruction framework must be able to pass (and add) metadata and so-called slow control information to the
output files, so input files are not needed and output files can stand on their own.
JANA allows objects of any type to be inserted into an event. Any output file writing would need to rely on tools that
interface with the Data Model and so are not explicitly part of the framework itself.

● The reconstruction framework must be able to run in streaming readout mode, that is:
○ with access to only parts of an event (single detector, single sector),
○ with events (or parts of events) appearing out of sequence,
○ individual algorithms must not rely on an algorithm-specific internal state to be able to make sense of disconnected

parts of events.
JANA’s Queue/Arrow architecture supports streaming at multiple levels. In particular, it can support one to many, or
reordering algorithms in a natural way. The on demand design naturally supports processing of partial events. This is an
extremely common exercise in GlueX.

Experimental Physics
Software and Computing

Infrastructure

Additional assessment criteria

● Amount of ‘boilerplate’ code that must be written by algorithm developers.
The jana-generate.py script generates the boilerplate code based on single or a few inputs. This includes making a
complete stand-alone plugin with CMakeLists.txt file. This makes it very easy to add new components quickly.

● Ability by the framework to avoid e.g. memory errors through interface enforcement mechanisms (e.g. const passing).
JANA passes pointers to const objects between factories and processors. This is required for reproducibility should the
order of factory calls be changed between program invocations.

● Ability for shared algorithm development between the two EIC detector collaborations (and/or outside of the EIC).
JANA factories are self contained in that they request objects and publish objects via the framework. Any detector
collaboration using the same input and output classes will be portable/sharable. Furthermore, the plugin mechanism
allows a plugin to provide one or more factories to any JANA executable. Thus, a single pre-compiled plugin can be used
in multiple experiments.

● Use of modern and sustainable coding practices, including in the code written by algorithm developers and other
contributors.
JANA is maintained in a Github repository. The issues, pull requests, and release mechanisms are used to maintain the
code. Automated builds and unit tests on multiple platforms are initiated by pull requests.

● Demonstration of performance in production environments.
GlueX.

Experimental Physics
Software and Computing

Infrastructure

Backups

Experimental Physics
Software and Computing

Infrastructure

Here I try and breakdown some example reconstruction code from ATHENA’s juggler framework
based on GAUDI. At the same time I try and compare this to what an equivalent JANA2
implementation would look like.

This is the first algorithm I looked at in the ATHENA repository and can be found here:

https://eicweb.phy.anl.gov/EIC/juggler/-/blob/master/JugReco/src/components/SimpleClustering.cpp

I looked at it first since the name “SimpleClustering” seemed like a good place to start.

The following are some notes I made a while back when trying to understand
how JANA, Gaudi, and Fun4all approach the basic function of the framework. It
is terribly incomplete, but may give some insight so I included it here in the
backup slides.

https://eicweb.phy.anl.gov/EIC/juggler/-/blob/master/JugReco/src/components/SimpleClustering.cpp

This is a preamble to the file. Nothing remarkable here.

Class is defined in implementation file in a Java-like way. This may
be a stylistic choice, but definitely something allowed by GAUDI.
Without a header file, the class cannot be directly used in code
outside of this. Any use would have to come from properties of the
class coming through one of its base classes.

The class is declared to GAUDI by the DECLARE_COMPONENT
call at the bottom of the file. This is defined through a few files but
eventually gets to this file and the following line:

Gaudi/GaudiPluginService/include/Gaudi/PluginServiceV2.h

Registry::instance().add(id, { libraryName(), std::move(f), std::move(props) });

At this point I don’t know if that is instantiating an object of this class
or otherwise generating code that can be used to instantiate
SimpleClustering objects later.

The JANA equivalent here would be to create a class inheriting from
JFactory and then report that to JANA by instantiating a
JFactoryGenerator class via template.

 JANA will use the JFactoryGenerator class to instantiate multiple
SimpleClustering objects later.

Data objects in Gaudi are contained in
DataHandle templated classes. It looks
like these wrappers are instantiated
with a pointer to the algorithm object
they belong to.

typo?

Convenience declarations

Gaudi Property objects look to similarly wrap variables in a
class and register it with the Gaudi system. This will allow
Gaudi to know and set these values externally.

Input and output objects are declared explicitly in
the constructor. It is not clear why this is needed in
addition to the DataHandle constructors above.

The JANA equivalent to these properties are configuration
parameters. It is not clear if Gaudi expects to change these after
event processing has started, but in JANA they are not expected to
change. A comparable JANA call would be:

double m_minModuleEdep = 5.0 * MeV;
app->SetDefaultParameter(“minModuleEdep”, m_minModuleEdep, “...”);

Gaudi initialization method. This returns a value indicating if the
initialization succeeds or fails.

JANA initialization method. Unlike Gaudi, JANA does not emit
a return value. In JANA, Init() is only called at event
processing time if/when an algorithm is first used and so it is
assumed to be required. Fatal errors in the Init() method are
expected to emit errors to the logging service and to tell the
application to quit via a call to app->Quit(). One may also
explicitly set an exit code with app->SetExitCode(val).

Here, a string property of the class is used to determine if an
input container should be made for MC hits.

This is the top of the execute() method which is called for every
event for which the algorithm is active. The first lines are used to get
the inputs for the algorithm and to create the output containers for
the algorithm.

This mechanism uses the existence of a container that may or may
not have been created in the init() method to determine whether to
get the actual hits into the container.

JANA method that is called for every event.

Input objects obtained as vector<const DFCALHit*> calohits

Algorithm creates cluster objects and “Inserts” them into the event using
the Insert() method. One could also fill a local std::vector<> of pointers
and publish those with the Set() method.

If the DFCALCluster class inherits from JObject, then the
AssociatedObject mechanism can be used. This allows the framework to
know about which hit objects were used to make the cluster.

Here is a comparison with Fun4All. This is taken from the following:

https://github.com/ECCE-EIC/coresoftware/blob/master/offline/packages/CaloReco/RawClusterBuilderFwd.h

I wanted to use another calorimeter clustering algorithm and this was the best I could locating with a quick
search.

To start with, I should note that some of the code dealing with this is spread over a few classes:

RawClusterDefs
RawCluster
RawClusterContainer
RawClusterBuilderFwd

Namespace. Defines RawClusterDefs::keytype
Inherits from PHObject
Inherits from PHObject
Inherits from SubsysReco

https://github.com/ECCE-EIC/coresoftware/blob/master/offline/packages/CaloReco/RawClusterBuilderFwd.h

This is just a namespace used to define the keytype used for the
RawCluster objects. Presumably this is useful for object persistence
since the unique id can be reproduced if the data were replayed.

JANA has removed support for object ids in JANA2. This is
due to almost never being used in JANA1. This is likely due to
the heavy use of pointers which also provide unique ids within
the event, but don’t require lookup tables to get at the object
data.

The RawClusterContainer class is interesting because it really
serves as a customized container class for RawCluster objects. It
has several methods like AddCluster, getCluster, getClusters, …
that include the word “cluster” in their names. These do not seem to
be doing anything special that any other container class would not
already be doing. It is unclear why a more general (templated)
container class is not used which could provide more uniformity in
the code.

n.b. getTotalEdep() looks to be the only method that has
functionality that would not be provided by a generic container
class.

In JANA, the JFactory (i.e. algorithm) class that produces the
data objects owns them and serves the combined purpose of the
RawClusterContainer and RawClusterBuilderFwd classes. The
JFactory class is actually a template itself where the template
parameter is the specific type of primary data object the factory
produces.
n.b. More than one object type can be produced by a JFactory.
The supplementary types would use Insert() to add them to the
event and would no longer be owned by the factory. This would
make no difference to the end user. The emphasis on having a
factory produce a single, primary object type is meant to
encourage modularity in the overall design by having more,
smaller algorithms.

