Gaudi as framework for the
EIC Detector(s)

Sylvester Joosten
CompSW Meeting, June 29, 2022

https://gaudi.web.cern.ch/gaudi/

ATLAS
What is Gaudi? @

EXPERIMENT

Fermi
m Gamma-ray Space Telescope
Gaudi is a framework software package that is used to build data
processing applications for High-Energy Physics experiments. It Key4HEP
contains all of the components and interfaces to allow you to build event 5 Y

data processing frameworks for your experiment.

e Started in LHCb, co-developed by LHCb and ATLAS O FUTURE

e Used for many current and future experiments: ATLAS, ClRCULAR
BESIII, Daya Bay, FCC, Fermi, HARP, LHCb, LBNE, LZ, and COLLIDER
MINERVA, core part of the Key4hep stack.

e We used Gaudi for the ATHENA proposal.

e Core principles:

o Separation between data and algorithms i/

o Well defined interfaces 13

o Reusable components.
e \Well-supported and actively developed
e Recently modernized for multi-threaded computing and : ;

heterogeneous computing environments, leveraging modern
C++ features. 2

Components to Gaudi

Transient Event

Store (TES)
Whiteboard to
communicate data

Application
Manager

Top-level application
that initializes the
framework and starts

the processing loop and read many times.

Scheduler and

Loop Manager
Modular
components that

between algorithms. Each
entry can be written once

schedule the
algorithm execution
tree and actual
processing loop

Algorithms
~ Functionally pure

~ routines that
computes M outputs
from N inputs. Called
for each data chunk
(event/framel/...).

] Inherently
thread-safe.

Ultimate flexibility: Everything is a
plugin that can be swapped out at .
runtime. That includes the TES,

scheduler, loop manager, ... —

Job Options
Configuration of
everything works
through a light-weight
python script

[

Services
Provide unique
resources to the
algorithms. E.g.
7| | file storage,
geometry service,
limited hardware
resources

(GPU,..),

messaging, ... /

N
Tools
Chunks of code shared between
algorithms. Typically not preferred, as
concurrent execution favors more small
algorithms over complicated algorithms
with many tools.

Modern (functional) Gaudi algorithms

Out \ In 0 1-n vect

0 Consumer

Mergin
1 Transformer Creing
Transformer
Producer
n MultiTransformer
vect Splitting Transformer

boolean FilterPredicate

boolean + 1-n

MultiTransformerFilter

Functional algorithms remove
most boilerplate of explicit
algorithm writing, and are
automatically suited for
concurrent processing.

Functional algorithms are
explicitly re-entrant.

Can of course also manually write algorithms (or new functional algorithm types), or (rarely) write
stateful algorithms with explicit cardinality for concurrent execution.

Example: ATHENA software stack

How does Gaudi fit into the EIC software stack?

DD4hep

Simulation in npsim

(DDG4) provides M

hits for Gaudi Gaudi (originally LHCb):
> connect geometry and

data to algorithms

DD4hep (CLiC, SLD):
define active and
passive geometry,
readout segmentation

%)
% ACT
S, Q S h _r
6/7’/'0@ ® 9% for DD4r?: Puiltin SUpport
ﬂ //)J o/))@f P geometries
J g/@f

G4 backend (can be swapped

>

out, e.g., celeritas, opticks,...)
Call ACTS for tracking &

vertexing, providing hits
and detector geometries

Juggler: I/O, digitization,
O reconstruction, clustering
and tracking algorithms

PyTO I’Ch TensorFlow

e o
I.% S3 XFE)%tD

el Flat output files (podio)

enable flexible workflows
(ROQT, python,...) without
additional dependencies,
available worldwide (S3,
xrootd)

alts

ACTS (ATLAS):
provide general track
reconstruction algorithms

Gaudi enables highly flexible concurrent workflows %

Juggler is a collection of Gaudi framework components
developed for the ATHENA proposal.
All Juggler algorithms reentrant by design
o Support concurrent processing, heterogeneous
environments from the beginning
o Highly modular
o Easy to integrate with external toolkits (ACTS,
tensorflow, ...)
o Reentrant algorithms easy to write, debug,
validate, and compose, even by beginners!
Reconstruction: steered through a simple python script —
trivial to reconfigure reconstruction for different detector
layouts, or for subsystem-only reconstructions
o Algorithms designed to be as small as possible to
allow easy composition/substitution/optimization
o Even true for the event scheduler! Concurrency in
Gaudi enabled by swapping out the event
scheduler (can use concurrent, parallel,
single-threaded, ...).

|

Algorithm 2
Algorithm 1

Algorithm 3

Algorithm 5 }—\—V

Algorithm 4 —

Algorithm 6 J

Algorithm 1

Algorithm 2]

Algorithm 5 }—\—
Algorithm 3 l
Algorithm 4 }— Algorithm 6

TIME

Why is concurrent (asynchronous) processing important?

Concurrent versus parallel processing

e Concurrent execution significantly faster than
parallel execution for complicated algorithm
flows, as we can avoid idle cores.

e Avoids hard limits from Amdahl’s law (speed
ceiling for code limited by the fraction of
non-parallel code (e.g. synchronization points).

1
(1-p)+p/N

e p: proportion of the code that is parallel
e N: number of cores

Speedup =

https://en.wikipedia.org/wiki/Amdah|%27s_law

Task 1 S Task 4
y Task 5
V6 2 n || (needs 2&1)
C
Task 3 Task 6
Task 1 Task 4
Task 5
e 2 (needs 2&1)
Task 3 || Task 6 || 1ask 7
(needs 6)

=)

Task 7
(needs 6)

How does GAUDI address the framework requirements?
Requirements [link]

e Must be able to run on both simulated events and real data. Algorithms
may use truth information, but must run without truth information too.

e Must be able to take advantage of heterogeneous computing resources

(multiple cores, GPUs, etc).

Must encourage modular approaches to algorithm development, using

defined interface layers.

Algorithms must be implemented using the selected data model, and ensure

that data are kept separate from the algorithm itself.

e Algorithms must be implemented in the framework independently from any
scheduling strategies (single/multithreaded, concurrent, online/offline).

NS

SEN< BN

Align perfectly with the core design goals for Gaudi!

How does GAUDI address the framework requirements?

Requirements [link]

e Must be open source, accessible to the entire community, and managed by
a sustainable core team.
e Must be able to pass (and add) metadata and so-called slow control
information to the output it produces, so input files are not needed and output
files can stand on their own.

e Must be able to run in streaming readout mode, that is:
o with access to only parts of an event (single detector, single sector),
* o with events (or parts of events) appearing out of sequence,
o individual algorithms must not rely on an algorithm-specific internal state to be able to make
sense of disconnected parts of events.

(*) Used for SR and HLT at LHCb, being deployed together with Allen for Run 3

How does it fit within the additional criteria? Y&y minimal, especially

for functional algorithms
(see example)
Amount of ‘boilerplate’ code that must be written by algorithm developers.
Ability by the framework to avoid e.g. memory errors through interface Baked into the TES (data
enforcement mechanisms (e.g. const passing). I !S read-only). Even further
Ability for shared algorithm development between the two EIC detector improved throulgh
collaborations (and/or outside of the EIC). reentrant algorithms.
Use of modern and sustainable coding practices, including in the cod Perfect for sharing, can use
written by algorithm developers and other contributors. and share algorithms with
Demonstration of performance in production environments. key4hep and potentially even

LHC experiments.

Gaudi modernization project

Demonstrated performance at many ensured merrn C+JT and
ongoing and future experiments modgrn design practices
(ATLAS, BESIII, Daya Bay, FCC, (required to support
Fermi, HARP, LHCb, LBNE, LZ, and concurrent and

MINERVA) heterogeneous computing!) .

Code Demonstration

An exa m p I e Of u Si n g G a u d i Both proposals were asked to address the following (by the second week):

Provide the full code that would be required for a simple algorithm that takes
a collection of hits and selects only those hits that are on a particular endcap
tracking detector and have a position outside a minimum radial range.

Submissions will be posted on indico by July 6 for community evaluation.

Using modern functional classes. Here we transform a set of hits into a corresponding set of
boolean flags.

11

We need a radial cut for our demonstration. Here we make it explicitly configurable (and
well-documented) for the options file.

12

Let’s construct our algorithm. Most of the code here just defines the configuration variables for the
options file, and default arguments.

i < L>
{)|
v
il - artrinnk H
\‘lll nL[‘\ l/ I—‘ 3(- LLl“{_/" L]C(LA{II‘\\ ’\AL\/
\i
)
5
tors L> passes adlal_cut,;
| | 0\ I'\lL n L\/'
passes_radlal_cut. '
f 1 - \ ~.
(N1t ()X, N1T ().Y) > m_rmin_cut);

And the actual algorithm. The function signature defines what gets read (read-only!) and what gets
written into the TES.

Corresponding options file

Import the stuff we will need:
e Application manager

e Data service of choice - let's use our EIC/Podio service for this example!
e Our example algorithm
[

Units, so it is clear what our radial cuts really mean.

15

Here we only need a data service, which needs to know what input file we are reading from.

16

\
))
."’
p
algorithms.append(main_algo)
11 - . ™, e AN mn + [&2 > . A~ \
output algo = PodioOutput/ : 1 lenames=)

output_algo.outputCommands =

d Ll orithms.appenal{output_a Lgo)

Three algorithms as we need to do 3 things: read input, execute RadialHitSelector, and write output

Only thing left is to setup the application, and we are ready for execution!

18

Can hit the ground running!

Tracking

Tracker digitization with noise

Realistic tracker hit reconstruction

Truth and realistic track seeding (ACTS)

Combinatorial Kalman Filter (finding/fitting) from ACTS
Far-forward matrix-based track reconstruction (RP/OMD)
Initial vertex finder (ACTS)

Arbitrary track projection

Reconstruction-generation matching Calorimetry
v Calorimeter digitization with noise/threshold effects

AN NN N NN

v Calorimetry hit merging
Services v Realistic calorimeter hit reconstruction
v/ (All standard Gaudi services) v Many glustering algorith.ms: Simple glustering, Islapd
v/ (All Key4hep services) clustgrlng, 2+1D clulsterlng, Topological 3D clustering
v Custom DD4hep geometry service v Hybrid cluster merging _ .
v/ Custom Podio data service v AI-bgsed electron-pion-muon separation (leveraging
v Custom Acts geometry service TFLite) o
v/ Particle service v Simple track-cluster association
PID Global
. . - v Multiple event builders
; EICH rﬁccins:ruptlonlu3|ptg?‘ the libirt backend v Multiple algorithms for DIS (electron, JB, DA, Sigma)
/ Ml:)ZcZkyErut(;\uF?ISnrr(l,%sngs?rrlljctirgn v Have momentum: Many more algorithms being actively 19

developed!

Gaudi and the EIC Software e esr?:rﬂv(‘)’?gﬁdples
Statement of Principles

a We aim to develop a diverse workforce, while also cultivating
an environment of equity and inclusivity as well as a culture of
belonging.

e We will have an unprecedented compute-detector integration:

Used In Stream I ng ConteXt’ € g : for H LT at LH Cb’ and * We will have a common software stack for online and offline software
no together Wlth A”en for the DAQ for LH Cb ru n_3 <\Lr‘:::::;ding the processing of streamed data and its time-ordered

ture.

® We aim for autonomous alignment and calibration.

. ® We aim for a rapid, near-real-time turnaround of the raw data to online
Demonstrated performance in heterogeneous el Ve
environments at LHC. Concurrent processing model, © We will leverage heterogeneous computing:
and flexibility of schedulers (single-process, olEwida e STt o Bt Ay IOk Abatte

systems.

multi-process, concurrent, parallel, ...) make Gaudi a
perfect fit for future changing environments.

o EIC software should be able to run on as many systems as possible,

\

while supporting specific system characteristics, e.g., accelerators such
as GPUs, where beneficial.

* We will have a modular software design with structures robust against
changes in the computing environment so that changes in underlying
code can be handled without an entire overhaul of the structure.

Large community already trained in Gaudi,

o We will aim for user-centered design:

Development paradigm is supremely modular where ~ <— e ormm proaram o o I Koapie o s o oo
even schedulers or the data store can be swapped. teams;

e EIC software will run on the systems used by the community, easily.

® We aim for a modular development paradigm for algorithms and tools
without the need for users to interface with the entire software
environment.

Gaudi and the EIC Software
Statement of Principles

Structure of C++ plugin with python configuration
leans itself well to reproducibility. e
Gaudi is sustainable: backed by large development
team (not the few developers typical of NP software),
and demonstrated reliability (used by many
experiments, not all at CERN).

\

Gaudi supports state-of-the-art modern software and
computing paradigms. No need to invest NP
resources to achieve this. If any framework comes
close to being a community standard, Gaudi is it.

Gaudi has been used for over 20 years for running
experiments. We have working digi/reconstruction for
EIC in Gaudi foday.

e Our data formats are open, simple and self-descriptive:

* We will favor simple flat data structures and formats to encourage
collaboration with computer, data, and other scientists outside of NP
and HEP.

* We aim for access to the EIC data to be simple and straightforward.

o We will have reproducible software:

e Data and analysis preservation will be an integral part of EIC software
and the workflows of the community.

® We aim for fully reproducible analyses that are based on reusable
software and are amenable to adjustments and new interpretations.

0 We will embrace our community:

® EIC software will be open source with attribution to its contributors.
* We will use publicly available productivity tools.
o EIC software will be accessible by the whole community.

® We will ensure that mission critical software components are not
dependent on the expertise of a single developer, but managed and
maintained by a core group.

* We will not reinvent the wheel but rather aim to build on and extend
existing efforts in the wider scientific community.

* We will support the community with active training and support sessions
where experienced software developers and users interact with new
users.

* We will support the careers of scientists who dedicate their time and
effort towards software development.

o We will provide a production-ready software stack throughout the

development:

* We will not separate software development from software use and
support.

* We are committed to providing a software stack for EIC science that
continuously evolves and can be used to achieve all EIC milestones.

¢ We will deploy metrics to evaluate and improve the quality of our
software.

® We aim to continuously evaluate, adapt/develop, validate, and integrate
new software, workflow, and computing practices.

Gaudi for EIC?

Large amount of reconstruction algorithms available
today

Part of the collaboration already trained in Gaudi, many
experts available at member institutions.

Synergy with Key4hep will allow for common shared
development with HEP experiments and first-class
support. Could adopt the K4AFWCore as basis for our
EIC framework for seamless integration with Podio and
DD4hep.

Demonstrated performance for very different
experimental needs - used by 10+ high-profile
experiments! (and for the EIC detector proposal).

Idea of algorithm sharing between experiments very
attractive.

Gaudi hits all the marks for our needs, is well
established yet modern, and in my opinion the
optimal choice for EIC framework.

