
Gaudi as framework for the 
EIC Detector(s)

Sylvester Joosten
CompSW Meeting, June 29, 2022

GAUDI



What is Gaudi?

2

● Started in LHCb, co-developed by LHCb and ATLAS
● Used for many current and future experiments: ATLAS, 

BESIII, Daya Bay, FCC, Fermi, HARP, LHCb, LBNE, LZ, and 
MINERvA, core part of the Key4hep stack.

● We used Gaudi for the ATHENA proposal.
● Core principles:

○ Separation between data and algorithms
○ Well defined interfaces
○ Reusable components.

● Well-supported and actively developed
● Recently modernized for multi-threaded computing and 

heterogeneous computing environments, leveraging modern 
C++ features.

Gaudi is a framework software package that is used to build data 
processing applications for High-Energy Physics experiments. It 
contains all of the components and interfaces to allow you to build event 
data processing frameworks for your experiment.

https://gaudi.web.cern.ch/gaudi/

…



Components to Gaudi

3

Services
Services

Services
Provide unique 
resources to the 
algorithms. E.g. 
file storage, 
geometry service, 
limited hardware 
resources 
(GPU,...), 
messaging, …

Algorithms
Functionally pure 
routines that 
computes M outputs 
from N inputs. Called 
for each data chunk 
(event/frame/…). 
Inherently 
thread-safe.

Transient Event 
Store (TES)
Whiteboard to 
communicate data 
between algorithms. Each 
entry can be written once 
and read many times.

Application 
Manager
Top-level application 
that initializes the 
framework and starts 
the processing loop

Scheduler and 
Loop Manager
Modular 
components that 
schedule the 
algorithm execution 
tree and actual 
processing loop

Job Options
Configuration of 
everything works 
through a light-weight 
python script

Tools
Chunks of code shared between 
algorithms. Typically not preferred, as 
concurrent execution favors more small 
algorithms over complicated algorithms 
with many tools.

Ultimate flexibility: Everything is a 
plugin that can be swapped out at 
runtime. That includes the TES, 
scheduler, loop manager, … 



Modern (functional) Gaudi algorithms

4
Can of course also manually write algorithms (or new functional algorithm types), or (rarely) write 
stateful algorithms with explicit cardinality for concurrent execution.

Functional algorithms remove 
most boilerplate of explicit 
algorithm writing, and are 
automatically suited for 
concurrent processing.

Functional algorithms are 
explicitly re-entrant.



How does Gaudi fit into the EIC software stack?

5

Gaudi (originally LHCb):
connect geometry and 
data to algorithms

DD4hep (CLiC, SLD):
define active and 
passive geometry, 
readout segmentation

ACTS (ATLAS):
provide general track 
reconstruction algorithms

Call ACTS for tracking & 
vertexing, providing hits 
and detector geometries

Simulation in npsim 
(DDG4) provides 
hits for Gaudi

ACTS has built-in support for DD4hep geometries

Juggler: I/O, digitization, 
reconstruction, clustering 
and tracking algorithms

DD4hep geometry 

service in Juggler
G4 backend (can be swapped 
out, e.g., celeritas, opticks,…)

Flat output files (podio) 
enable flexible workflows 
(ROOT, python,…) without 
additional dependencies, 
available worldwide (S3, 
xrootd)

Example: ATHENA software stack



Gaudi enables highly flexible concurrent workflows

6

● Juggler is a collection of Gaudi framework components 
developed for the ATHENA proposal.

● All Juggler algorithms reentrant by design
○ Support concurrent processing, heterogeneous 

environments from the beginning
○ Highly modular
○ Easy to integrate with external toolkits (ACTS, 

tensorflow, …)
○ Reentrant algorithms easy to write, debug, 

validate, and compose, even by beginners!
● Reconstruction: steered through a simple python script → 

trivial to reconfigure reconstruction for different detector 
layouts, or for subsystem-only reconstructions

○ Algorithms designed to be as small as possible to 
allow easy composition/substitution/optimization

○ Even true for the event scheduler! Concurrency in 
Gaudi enabled by swapping out the event 
scheduler (can use concurrent, parallel, 
single-threaded, …).



Concurrent versus parallel processing

7

● Concurrent execution significantly faster than 
parallel execution for complicated algorithm 
flows, as we can avoid idle cores.

● Avoids hard limits from Amdahl’s law (speed 
ceiling for code limited by the fraction of 
non-parallel code (e.g. synchronization points).

Why is concurrent (asynchronous) processing important?

Task 1

Task 2

Task 3

S
y
n
c

Task 4

Task 6

S
y
n
c

Task 7
(needs 6)

Task 5 
(needs 2&1)

Task 1

Task 2

Task 3

Task 4

Task 6 Task 7
(needs 6)

Task 5 
(needs 2&1)● p: proportion of the code that is parallel

● N: number of cores

https://en.wikipedia.org/wiki/Amdahl%27s_law



How does GAUDI address the framework requirements?

8

✅

✅

✅

✅

✅

Align perfectly with the core design goals for Gaudi!



How does GAUDI address the framework requirements?

9

✅

✅

✅

(*) Used for SR and HLT at LHCb, being deployed together with Allen for Run 3

*



How does it fit within the additional criteria?

10

Very minimal, especially 
for functional algorithms 
(see example)

Baked into the TES (data 
is read-only). Even further 
improved through 
reentrant algorithms.

Perfect for sharing, can use 
and share algorithms with 
key4hep and potentially even 
LHC experiments.

Gaudi modernization project 
ensured modern C++ and 
modern design practices 
(required to support 
concurrent and 
heterogeneous computing!) 

Demonstrated performance at many 
ongoing and future experiments 
(ATLAS, BESIII, Daya Bay, FCC, 
Fermi, HARP, LHCb, LBNE, LZ, and 
MINERvA)



An example of using Gaudi

11

Using modern functional classes. Here we transform a set of hits into a corresponding set of 
boolean flags.



12

We need a radial cut for our demonstration. Here we make it explicitly configurable (and 
well-documented) for the options file.



13
Let’s construct our algorithm. Most of the code here just defines the configuration variables for the 
options file, and default arguments.



14
And the actual algorithm. The function signature defines what gets read (read-only!) and what gets 
written into the TES.



Corresponding options file

15

Import the stuff we will need:
● Application manager
● Data service of choice - let’s use our EIC/Podio service for this example!
● Our example algorithm
● Units, so it is clear what our radial cuts really mean.



16

Here we only need a data service, which needs to know what input file we are reading from.



17Three algorithms as we need to do 3 things: read input, execute RadialHitSelector, and write output



18

Only thing left is to setup the application, and we are ready for execution!



Multiple FTEs worth of components available today 

19

Tracking
✓ Tracker digitization with noise
✓ Realistic tracker hit reconstruction
✓ Truth and realistic track seeding (ACTS)
✓ Combinatorial Kalman Filter (finding/fitting) from ACTS
✓ Far-forward matrix-based track reconstruction (RP/OMD)
✓ Initial vertex finder (ACTS)
✓ Arbitrary track projection
✓ Reconstruction-generation matching

Services
✓ (All standard Gaudi services)
✓ (All Key4hep services)
✓ Custom DD4hep geometry service
✓ Custom Podio data service
✓ Custom Acts geometry service
✓ Particle service

PID
✓ RICH reconstruction using the libirt backend
✓ Fuzzy-K clustering algorithm
✓ Mock truth PID reconstruction

Calorimetry
✓ Calorimeter digitization with noise/threshold effects
✓ Calorimetry hit merging
✓ Realistic calorimeter hit reconstruction
✓ Many clustering algorithms: Simple clustering, Island 

clustering, 2+1D clustering, Topological 3D clustering
✓ Hybrid cluster merging
✓ AI-based electron-pion-muon separation (leveraging 

TFLite)
✓ Simple track-cluster association

Global
✓ Multiple event builders
✓ Multiple algorithms for DIS (electron, JB, DA, Sigma)
✓ Have momentum: Many more algorithms being actively 

developed!

Can hit the ground running!



Gaudi and the EIC Software 
Statement of Principles

2020

Used in streaming context, e.g. for HLT at LHCb, and 
no together with Allen for the DAQ for LHCb run-3

Demonstrated performance in heterogeneous 
environments at LHC. Concurrent processing model, 
and flexibility of schedulers (single-process, 
multi-process, concurrent, parallel, …) make Gaudi a 
perfect fit for future changing environments.

Large community already trained in Gaudi, 
Development paradigm is supremely modular where 
even schedulers or the data store can be swapped.



Gaudi and the EIC Software 
Statement of Principles

2121

Structure of C++ plugin with python configuration 
leans itself well to reproducibility.

Gaudi is sustainable: backed by large development 
team (not the few developers typical of NP software), 
and demonstrated reliability (used by many 
experiments, not all at CERN).

Gaudi supports state-of-the-art modern software and 
computing paradigms. No need to invest NP 
resources to achieve this. If any framework comes 
close to being a community standard, Gaudi is it.

Gaudi has been used for over 20 years for running 
experiments. We have working digi/reconstruction for 
EIC in Gaudi today. 



Gaudi for EIC?
● Large amount of reconstruction algorithms available 

today
● Part of the collaboration already trained in Gaudi, many 

experts available at member institutions. 
● Synergy with Key4hep will allow for common shared 

development with HEP experiments and first-class 
support. Could adopt the K4FWCore as basis for our 
EIC framework for seamless integration with Podio and 
DD4hep.

● Demonstrated performance for very different 
experimental needs - used by 10+ high-profile 
experiments! (and for the EIC detector proposal).

● Idea of algorithm sharing between experiments very 
attractive. 

● Gaudi hits all the marks for our needs, is well 
established yet modern, and in my opinion the 
optimal choice for EIC framework.

2222


