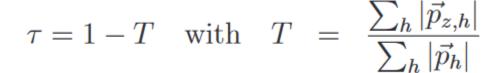


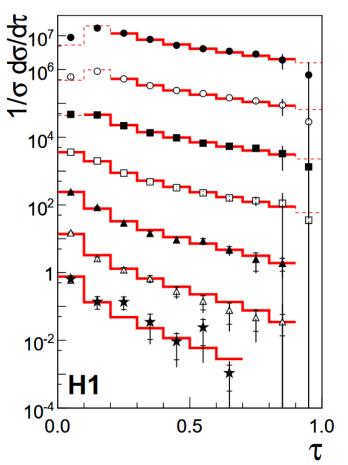
Measurement of Event Shape Observables with H1 at HERA

Henry Klest for the H1 Collaboration

CFNS NP-QCD Workshop, Sept. 21, 2022

H1prelim-21-032 – Triple-differential 1-Jettiness


H1prelim-22-033 – Groomed Event Shapes

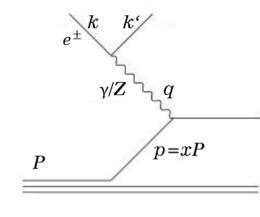

More results than I have time to discuss here, ask me about them!

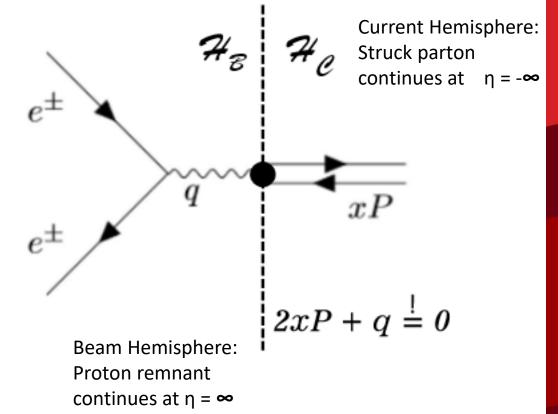
Event Shapes

- Inclusive observables where all particles contribute
 - E.g. Thrust measures degree of collimation along an axis
- Sensitive to QCD across scales
- Calculable to high precision in perturbation theory
 - Fixed-order QCD → tail of thrust distribution
 - Soft-collinear effective theory (SCET) calculations → peak of thrust distribution
- Used extensively in e⁺e⁻ and Breit frame e⁺p collisions

H1 Data

- <Q>= 15 GeV (x 20°
- <Q>= 18 GeV (x 20⁵
- <Q>= 24 GeV (x 204
- \Box <Q>= 37 GeV (x 20³)
- ▲ <Q>= 58 GeV (x 20
- \triangle <Q>= 81 GeV (x 201
- ★ <Q>=116 GeV (x 20°)
- --- NLO(α_s^2)+NLL+PC (fitted)
- ---- NLO(α_s^2)+NLL+PC (extrapolated


Inclusive DIS & Breit Frame


- HERA-II data
 - $Q^2 > 150 \text{ GeV}^2$, 0.2 < y < 0.7
 - No direct x_{Bi} cut applied
 - 352 pb⁻¹ collected
- Breit Frame
 - Defined as the frame where $2x_{Bj.}P + q = 0$
 - Divides event into two hemispheres: "beam"/"remnant"/"target" hemisphere and "current"/"struck parton" hemisphere
 - Exchanged boson reverses struck parton's momentum
 - Parton has \overrightarrow{xP} incoming, $-\overrightarrow{xP}$ outgoing

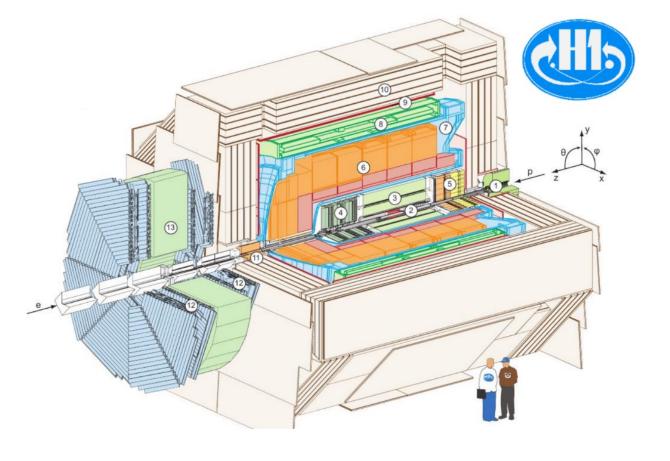
$$Q^{2} = -q^{2} = -(k - k')^{2}$$

$$y = \frac{p \cdot q}{p \cdot k}$$

$$x = -\frac{q^{2}}{2P \cdot q} = \frac{Q^{2}}{2P \cdot q}$$

H1 Detector

• HERA


• World's only high energy electron-proton collider

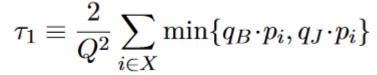
$$E_e = 27.6 \text{ GeV}, E_p = 920 \text{ GeV}$$

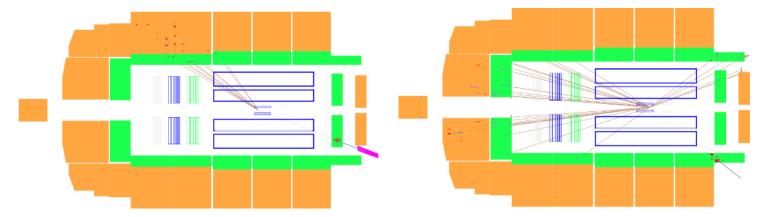
 $\rightarrow \sqrt{s} = 319 \text{ GeV}$

• 352 pb⁻¹ collected in HERA-II run period from 2003-2007

• H1 Experiment

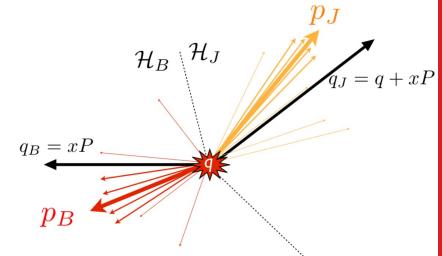
- Hermetic detector with asymmetric design
 - Drift chamber + silicon tracking
 - High-resolution LAr calorimeter
- Trigger on high-energy hadronic or EM LAr cluster
 - > 99% efficient for y < 0.7

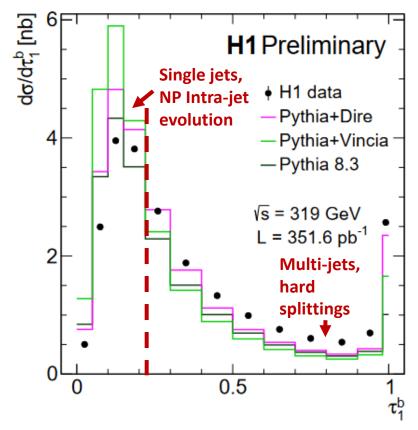



Electromagnetic part	Hadronic part
$10 \text{ to } 100 \text{ cm}^2$	$50 \text{ to } 2000 \text{ cm}^2$
20 to 30 X_0 (30784)	$\begin{vmatrix} 4.7 \text{ to } 7 \ \lambda_{abs} \\ \approx 50\% / \sqrt{E_h} \oplus 2\% \end{vmatrix}$
$\approx 11\%/\sqrt{E_e} \oplus 1\%$	$lpha 50\%/\sqrt{E_h} \oplus 2\%$

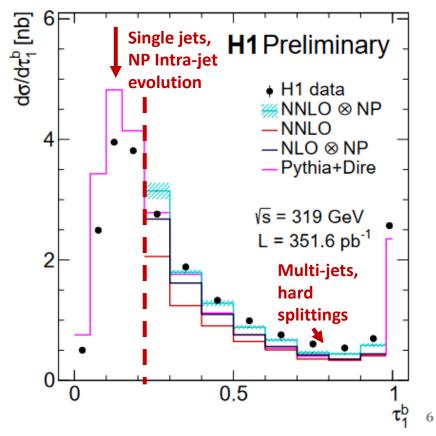
H1 LAr Calorimeter Specifications

1-Jettiness Event Shape

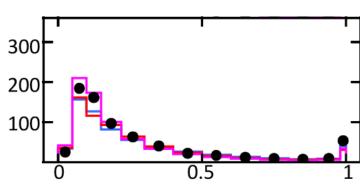

• Sum of four-vector dot product of final state particles with virtual boson axis or beam axis

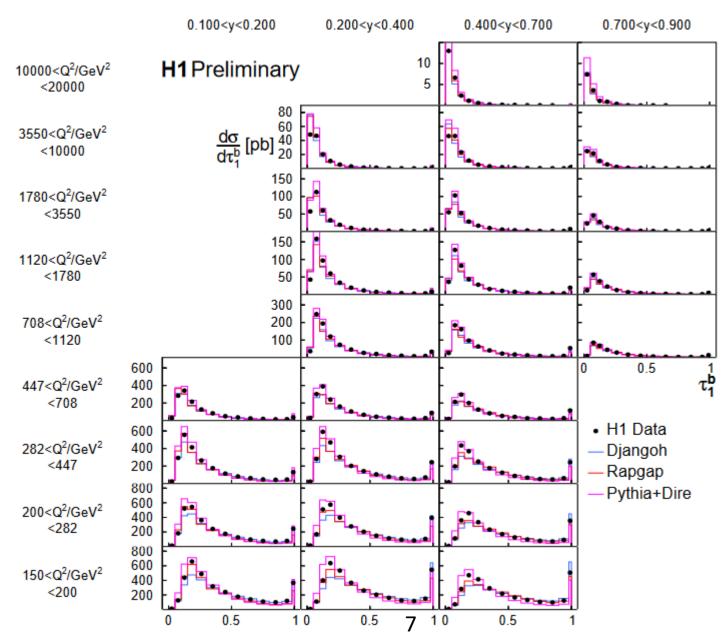


- DIS 1-jet configuration
- Most HFS particles collinear to scattered parton
 - ightarrow Small au_1^b


- Dijet event
- More and larger contributions to the sum over the HFS
- ightarrow Large au_1^b

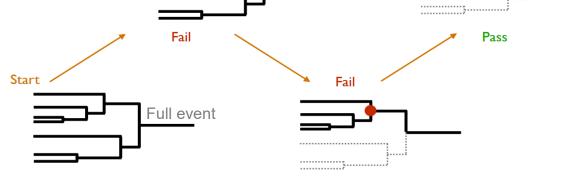
- Parton shower model comparison
 - Peak region highly sensitive to different showering
 - No fully satisfactory description


- $\gamma p \rightarrow 2 Jets + X$ Prediction from NNLOJET
 - NP corrections from Pythia8.3
 - NNLO provides good description of tail region, improves over NLO

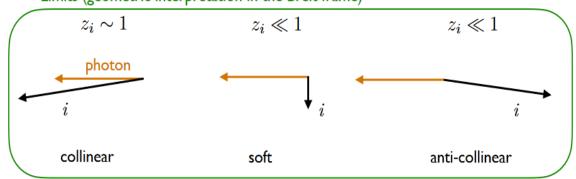


Triple-Differential Cross-Section

- With increasing Q:
 - Total cross-section decreases
 - Tail region decreases
 - Peak moves to lower τ
 - At higher momentum transfer, jets are more collimated
- With increasing y:
 - $\tau = 1$ di-jet peak is enhanced


$$0.4 < y < 0.7, 708 < Q^2 / \text{ GeV}^2 < 1120$$

Event Grooming in DIS


- Whole event is clustered into one "jet"
- Iteratively de-cluster until grooming condition is passed
 - Analogous to Soft Drop in p+p
- Groomed events are similar to groomed jets!

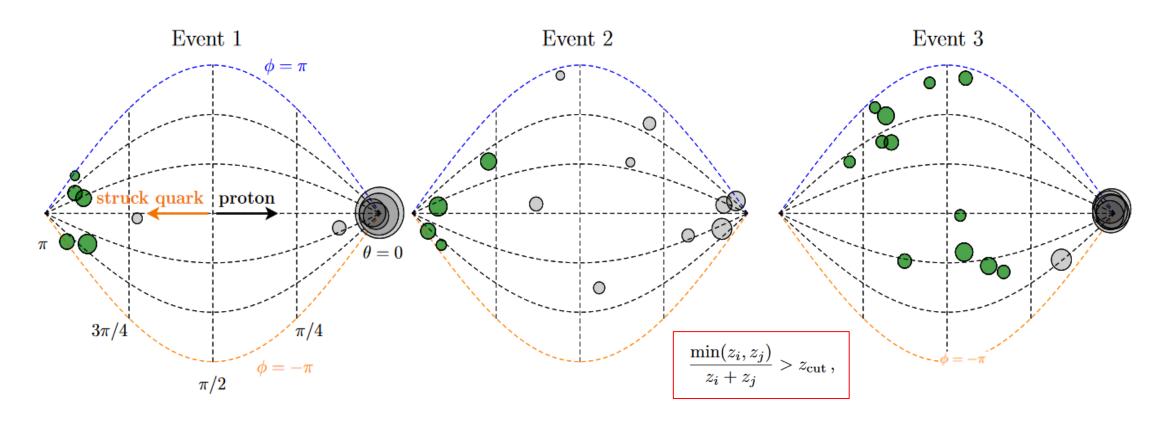
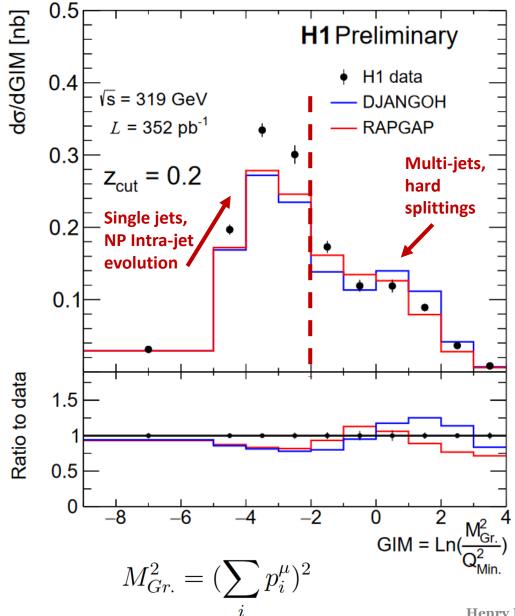
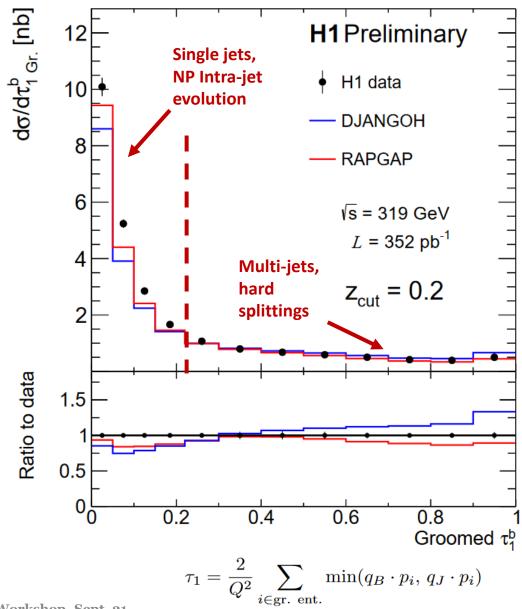
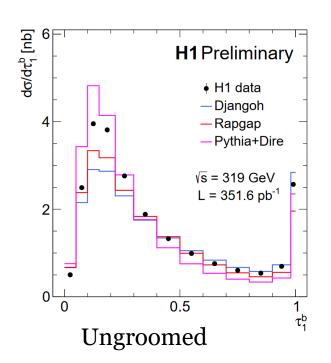
Groomed event

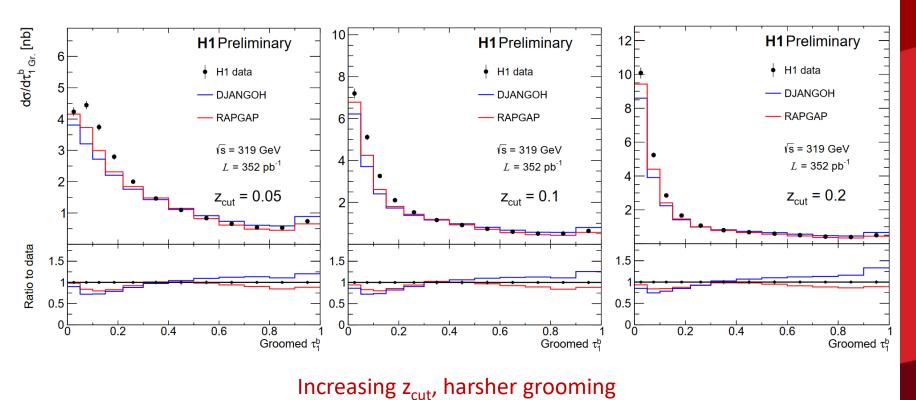
$$z_i = \frac{P \cdot p_i}{P \cdot q} \quad \xrightarrow{\text{Breit}} \quad z_i = n \cdot p_i/Q = p_i^+/Q \,.$$

Limits (geometric interpretation in the Breit frame)

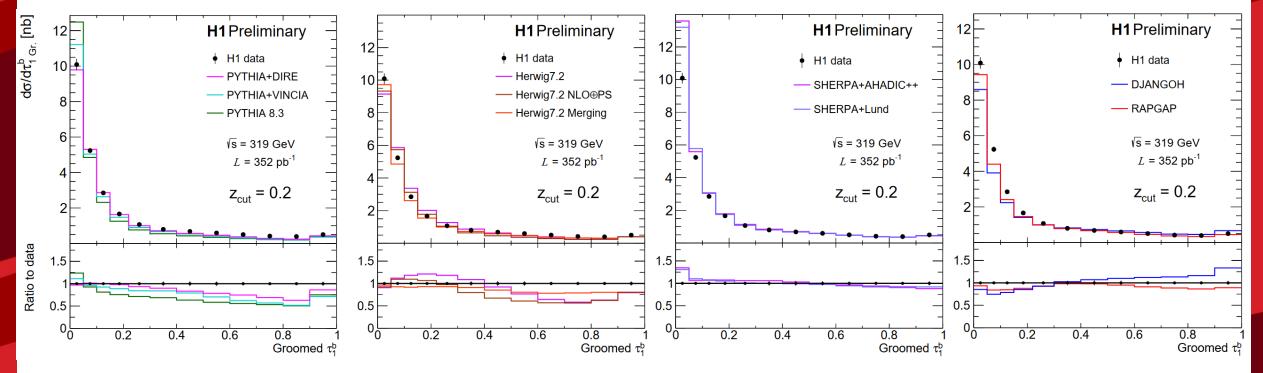
$$rac{\min(p_{t1},p_{t2})}{p_{t1}+p_{t2}}>z_{\mathrm{cut}}$$
 $extstylength rac{\min(z_i,z_j)}{z_i+z_j}>z_{\mathrm{cut}}$ p+p Soft Drop condition DIS grooming condition

Breit Frame Event Displays


Figure 2. Visualization of three Pythia 8 events at $\sqrt{s} = 63$ GeV and $Q \sim 10$ GeV before and after grooming. The particles in this events are represented by disks on the unfolded sphere. Green disks represent particles that pass grooming where grayed-out particles are removed from the event by the grooming procedure. For the grooming parameter we use here $z_{\rm cut} = 0.1$

Observables

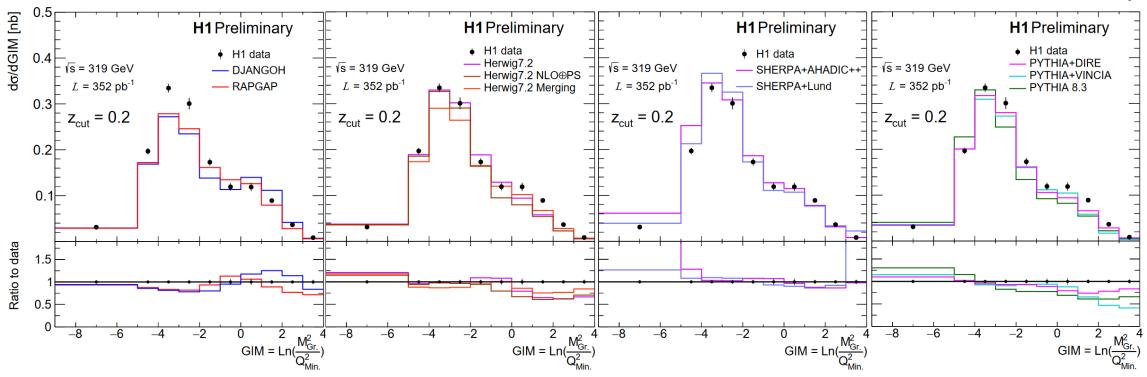


- RAPGAP and DJANGOH
 - Standard H1 MCs, tuned for HERA, LO CTEQ PDFs
 - Both use LEPTO for matrix elements $O(\alpha_s)$
- DJANGOH:
 - Color dipole model PS + string fragmentation
- RAPGAP:
 - DGLAP PS + string fragmentation

- Data is corrected for real QED ISR and FSR
- Uncertainty on data is statistical ⊕ systematic
 - Dominated by model uncertainty from bin-by-bin correction

Results – Groomed 1 Jettiness

$$\tau_1 = \frac{2}{Q^2} \sum_{i \in \text{gr. ent.}} \min(q_B \cdot p_i, \, q_J \cdot p_i)$$



- PYTHIA Version 8.3
 - VINCIA Antenna Shower
 - DIRE Dipole shower + multijet merging
- Herwig Version 7.2 (Angular-ordered)
 - NLO ⊕PS AO Shower, subtractive matching
 - Merging Dipole shower + multijet merging
- SHERPA Version 2.2.12 (MEPS@NLO)
 - AHADIC++ Cluster Fragmentation
 - Lund String Fragmentation

- Best tail region from SHERPA, RAPGAP
 - Fixed-order, multijets, hard splittings
- Best peak region from DIRE, Herwig Merging
 - Resummation, parton shower, hadronization

Results – Groomed Invariant Mass $M_{Gr.}^2 = (\sum p_i^{\mu})^2$

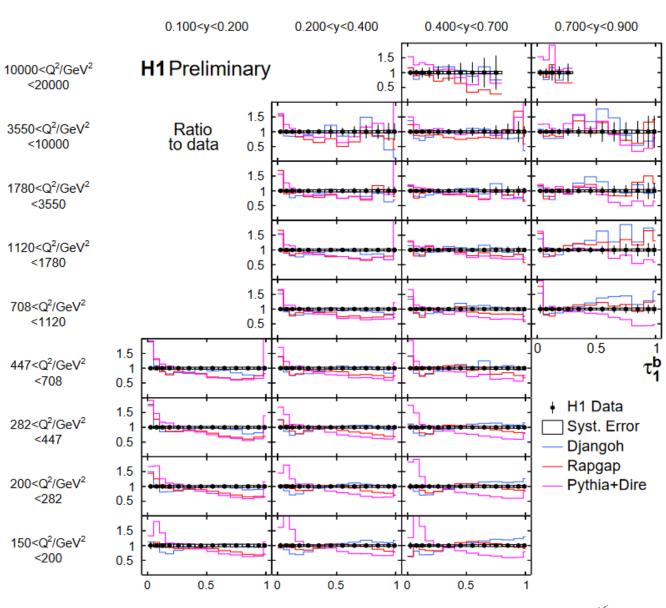
$$M_{Gr.}^2 = (\sum_i p_i^{\mu})^2$$

- PYTHIA Version 8.3
 - VINCIA Antenna Shower
 - DIRE Dipole shower + multijet merging
- Herwig Version 7.2 (Angular-ordered)
 - NLO ⊕PS AO Shower, subtractive matching
 - Merging Dipole shower + multijet merging
- SHERPA Version 2.2.12 (MEPS@NLO)
 - AHADIC++ Cluster Fragmentation
 - Lund String Fragmentation

- $Q^2_{Min.} = 150 \text{ GeV}^2$
- Best high mass region from SHERPA
 - Fixed-order, multijets, hard splittings
- Best low mass region from Herwig, DIRE
 - Resummation, parton shower, hadronization

Conclusion

- Groomed and ungroomed event shapes provide a strong handle on nonperturbative physics
 - Hadronization, parton showers, and the interplay between them
- H1 archived data provides an ideal environment for testing new theoretical tools (MC generators, analytic calculations) before the EIC turns on
 - Excellent playground for tuning MC generators
 - Clean collision system allows for higher sensitivity to NP jet dynamics
 - Room for non-perturbative universality studies (e+e-,p+p)


Thank you!

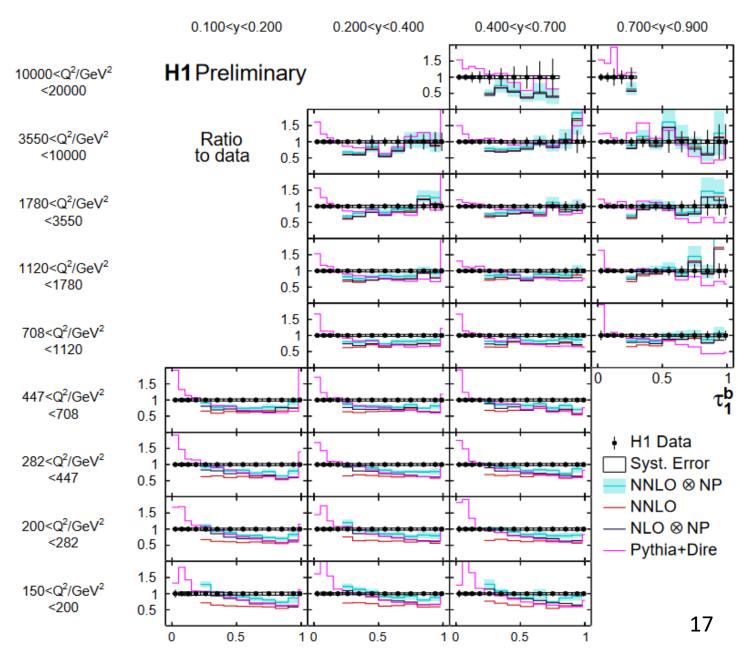
Backup

Triple-Differential Cross-Section

- Ratios to data
- Stat. uncertainties range from a few % to a few 10s of %
- Sys. uncertainties around 5%
- Djangoh and Rapgap perform reasonably well over full phase space
- Pythia+Dire too large in peak region

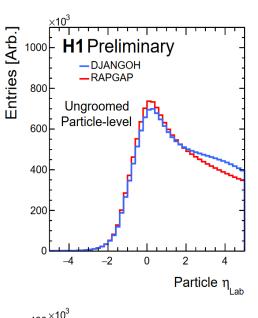
 $0.4 < y < 0.7, 708 < Q^2 / GeV^2 < 1120$

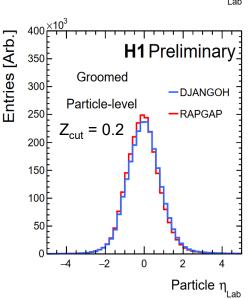
Triple-Differential Cross-Section

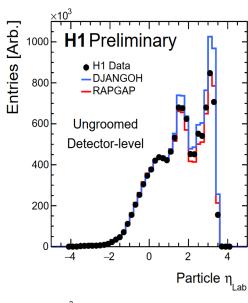

- NNLO QCD prediction for $ep \rightarrow 2 Jets + X$
 - Reasonable description over full phase space
 - Scale uncertainties relatively small
 - NNLO improves over NLO
- NP corrections are sizable

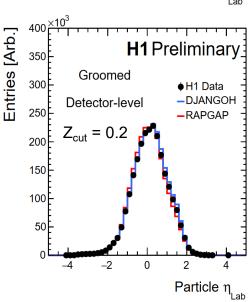
$$0.4 < y < 0.7, 708 < Q^2 / GeV^2 < 1120$$

$$0.5$$

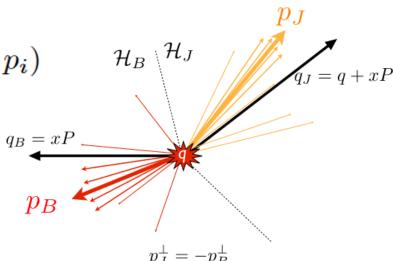

$$0.5$$

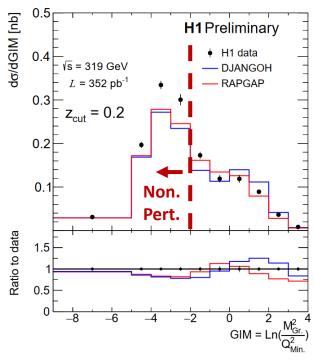

$$0.5$$

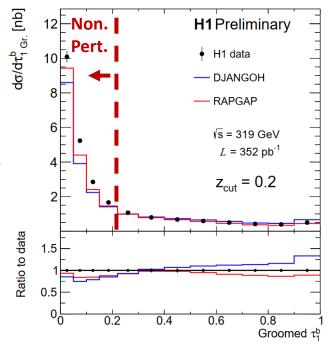



Grooming Benefits

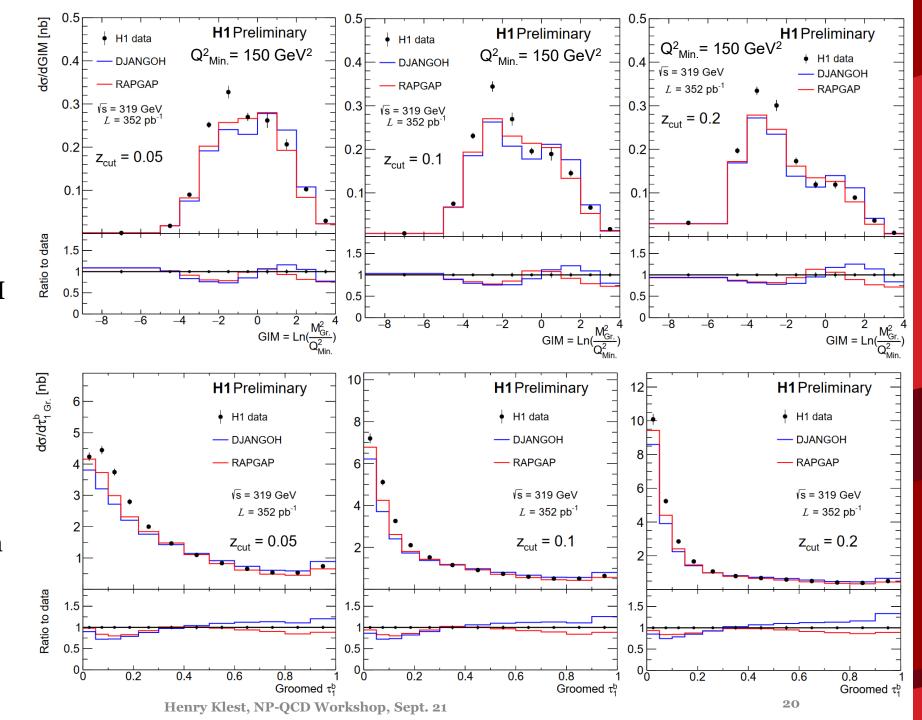
- No underlying event, why groom?
 - Less affected by lab-frame detector acceptance
 - Mitigate QCD remnant, ISR
 - No theoretically challenging non-global logarithms
- Ungroomed detector-level shows significant difference from particle-level
 - Detector acceptance, efficiencies
- Grooming events brings particle-level and detector-level distributions into much better agreement!


Observables

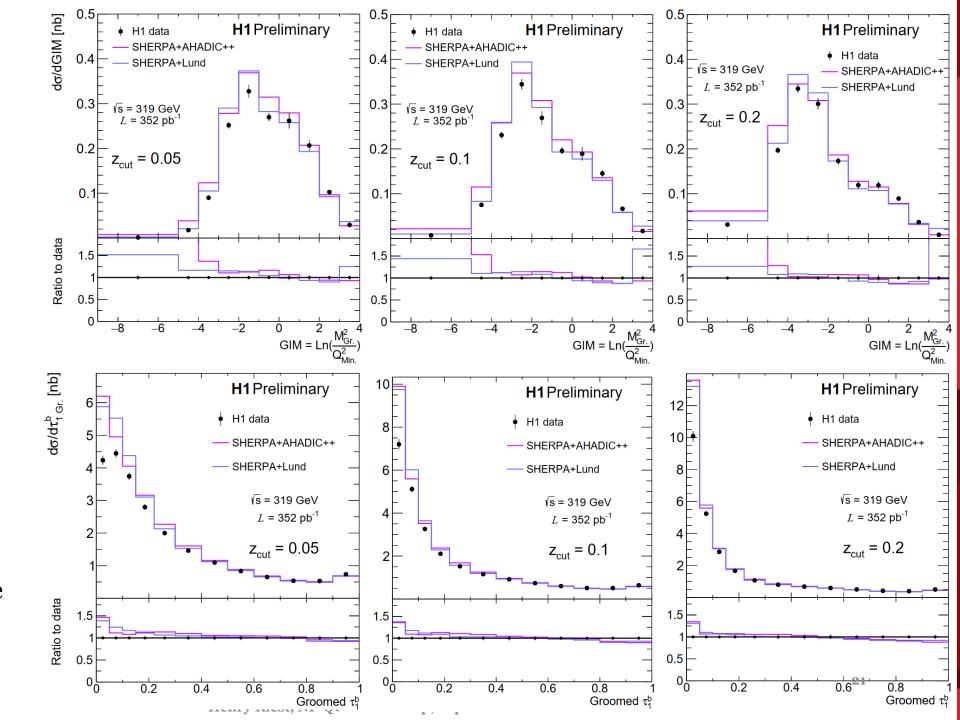

- After grooming procedure, a subset of particles survives
 - Event shape is calculated with these particles
 - Two event shapes studied here
- Groomed Invariant Mass (GIM) $M_{Gr.}^2 = (\sum_i p_i^\mu)^2$
- Groomed 1-Jettiness


$$\tau_1 = \frac{2}{Q^2} \sum_{i \in \text{gr. ent.}} \min(q_B \cdot p_i, q_J \cdot p_i)$$

$$\tau_1^b \to q_J = q + xP,$$

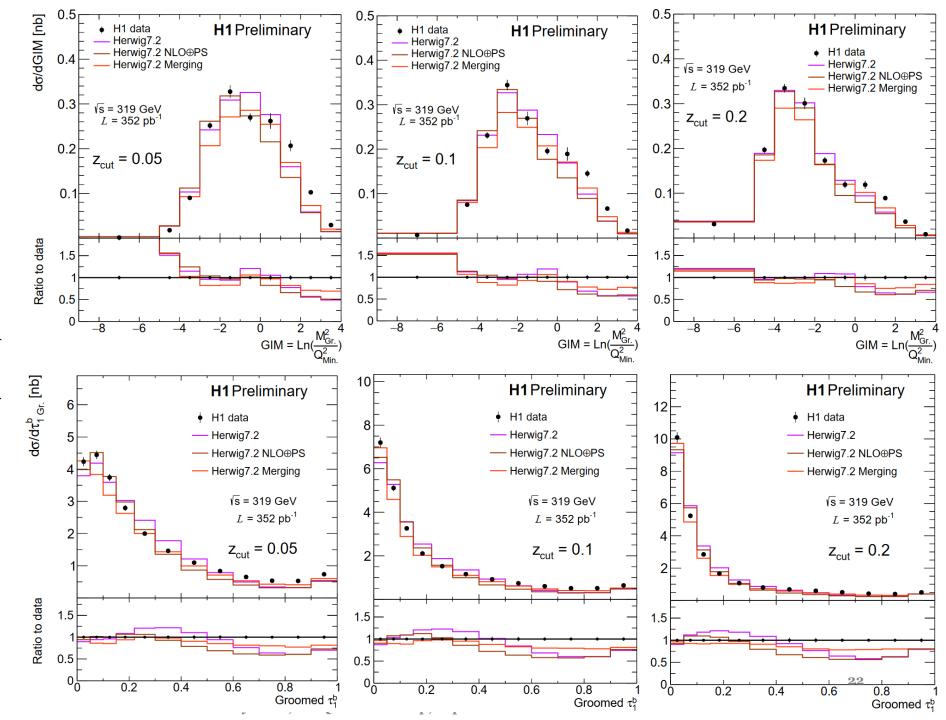

$$q_B = xP$$

- Data is corrected for real QED ISR and FSR
- Uncertainty on data is statistical ⊕ systematic
- RAPGAP and DJANGOH
 - Standard H₁ MCs
 - Both use LEPTO for matrix elements $O(\alpha_s)$
- DJANGOH:
 - Color dipole model for parton shower + string fragmentation
- RAPGAP:
 - DGLAP parton shower + string fragmentation



• SHERPA

- Version 2.2.12
- MEPS@NLO

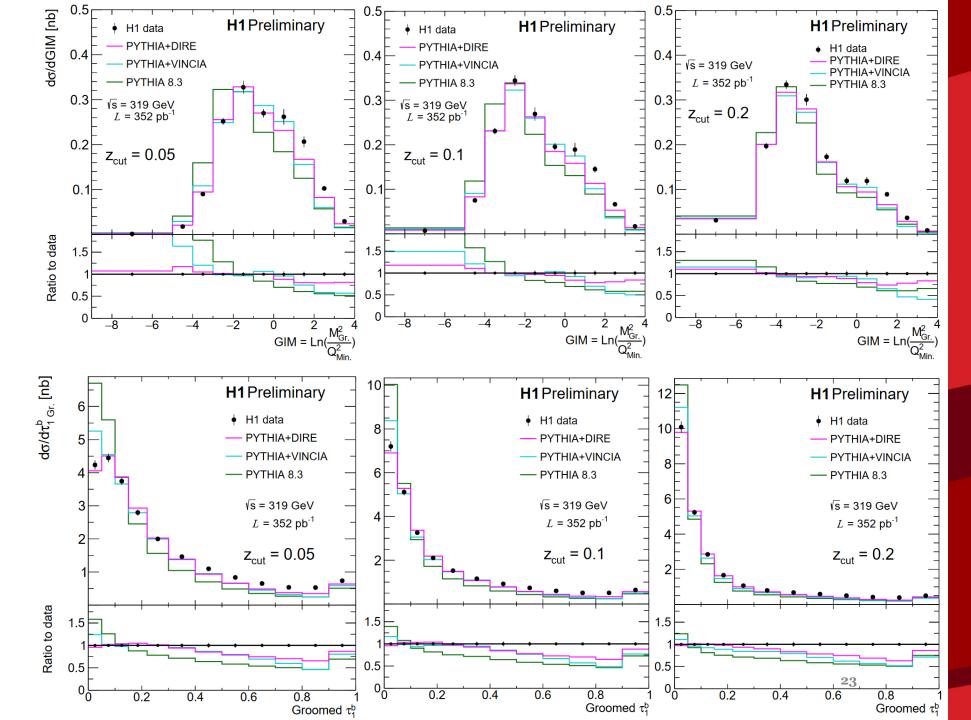

• AHADIC++:

- SHERPA native cluster hadronization model
- Lund:
 - Lund string model from PYTHIA
- Both models provide good description of fixed-order region

- Herwig
 - Version 7.2.2
- NLO

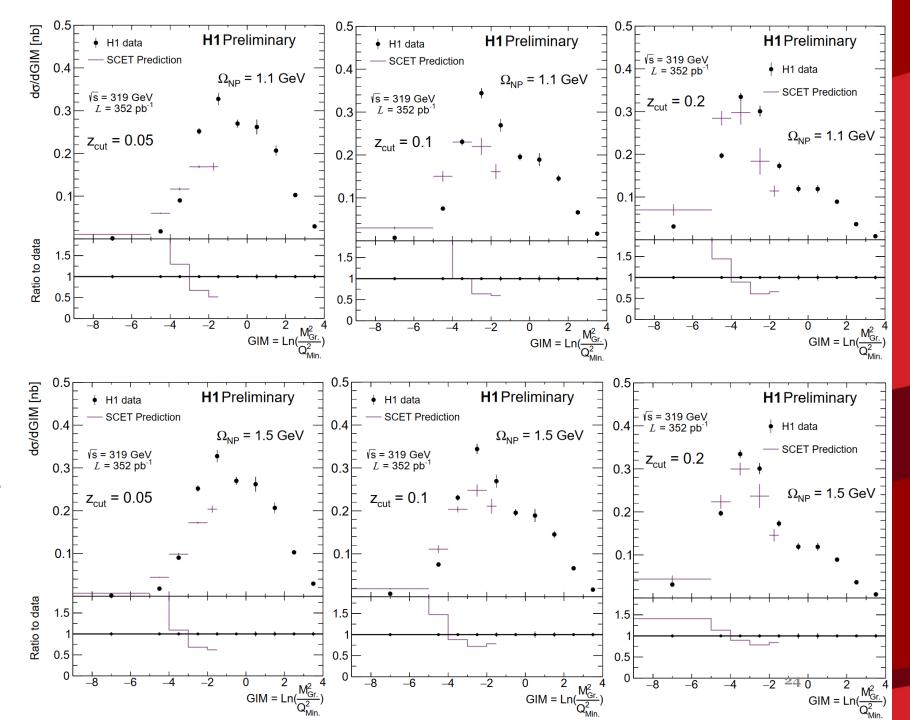
 PS:
 - Herwig internal implementation of MC@NLO via Matchbox
- Merging:
 - Dipole shower with multijet merging

• PYTHIA


- Version 8.3
- No external matrix elements

• DIRE:

- Dipole resummation
- Excellent description in resummation region


• VINCIA:

Antenna shower

- Analytic SCET
 - From Y. Makris [1]
 - Evaluated at two values of $\Omega_{\rm NP}$
 - Shape function mean
 - No fixed-order calculation yet incorporated
- Agreement improves with increasing $z_{cut,} \Omega_{NP}$
 - Non-perturbative effects are significant!
 - Factorization validity improves to higher z_{cut}

$$egin{aligned} rac{d\sigma_{
m had.}}{dxdQ^2dm_{
m gr.}^2} &= \int d\epsilon rac{d\sigma}{dxdQ^2dm_{
m gr.}^2} \Big(m_{
m gr.}^2 - rac{\epsilon^2}{z_{
m cut}}\Big) \, f_{
m mod.}(\epsilon) \ , \ f_{
m mod.}(\epsilon) &= N_{
m mod.} rac{4\epsilon}{\Omega^2} \exp\left(rac{2\epsilon}{\Omega}
ight) \end{aligned}$$

region 1:
$$1 \gg z_{\rm cut} \gg m_{\rm gr.}^2/Q^2$$

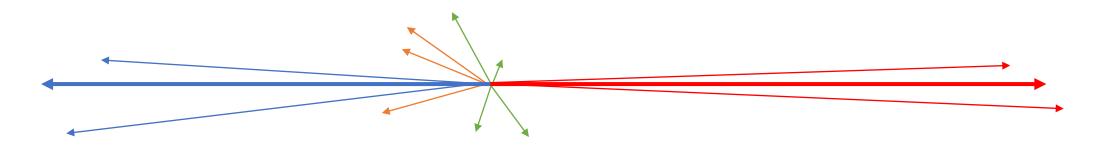
$$\lambda = \frac{m_{\rm gr.}^2}{Q^2} \; , \quad$$

$$p = (p^+, p^-, p^\perp)$$

Jet Direction (Breit $\eta=-\infty$) = \bar{n} -collinear direction

Beam Direction (Breit $\eta=-\infty$) = n-collinear direction

Soft Radiation (Isotropic)


Collinear-soft radiation, wide-angle soft radiation mostly along jet direction

 $p = (p^+, p^-, p^\perp)$ n-collinear: $p_n \sim Q(z_{\rm cut}, 1, \sqrt{z_{\rm cut}})$,

soft: $p_s \sim Qz_{\rm cut}(1,1,1)$,

collinear-soft: $p_{cs} \sim Q(\lambda, z_{\rm cut}, \sqrt{z_{\rm cut}}\lambda)$,

 \bar{n} -collinear: $p_{\bar{n}} \sim Q(1, \lambda, \sqrt{\lambda})$,

$$\frac{d\sigma}{dx dQ^2 dm_{\text{gr.}}^2} = H(Q, y, \mu) S(Qz_{\text{cut}}, \mu) \sum_{f} \mathcal{B}_{f/P}(x, Q^2 z_{\text{cut}}, \mu) \int de_{\bar{n}} de_{cs} \, \delta(m_{\text{gr.}}^2 - e_{\bar{n}} - e_{cs}) J(e_{\bar{n}}, \mu^2) \mathcal{C}(e_{cs} z_{\text{cut}}, \mu^2)$$

In Region 1, shape of distribution depends only on jet and collinear-soft functions, which are independent of Q

$$\times \left[1 + \mathcal{O}\left(z_{\text{cut}}, \frac{m_{\text{gr.}}^2}{z_{\text{cut}}Q^2}\right)\right], \quad (15)$$

region 1:
$$1 \gg z_{\rm cut} \gg m_{\rm gr.}^2/Q^2$$

$$\lambda = rac{m_{
m gr.}^2}{Q^2} \; ,$$

$$p = (p^+, p^-, p^\perp)$$

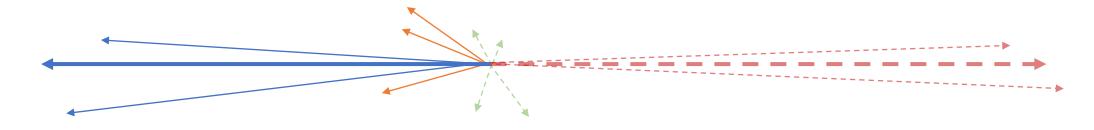
Jet Direction (Breit $\eta=-\infty$) = \overline{n} -collinear direction

Beam Direction (Breit $\eta=-\infty$) = n-collinear direction

Soft Radiation (Isotropic)

Collinear-soft radiation, wide-angle soft radiation mostly along jet direction

Grooming causes only Jet and Collinear-soft radiation to contribute to shape of distribution


in the single-jet (low invariant mass) limit

n-collinear:
$$p_n \sim Q(z_{\rm cut}, 1, \sqrt{z_{\rm cut}})$$
,

soft:
$$p_s \sim Qz_{\text{cut}}(1,1,1)$$
,

collinear-soft:
$$p_{cs} \sim Q(\lambda, z_{\text{cut}}, \sqrt{z_{\text{cut}}\lambda})$$
,

$$\bar{n}$$
-collinear: $p_{\bar{n}} \sim Q(1, \lambda, \sqrt{\lambda})$,

$$\frac{d\sigma}{dxdQ^2dm_{\rm gr.}^2} = H(Q,y,\mu) S(Qz_{\rm cut},\mu) \sum_f \mathcal{B}_{f/P}(x,Q^2z_{\rm cut},\mu) \int de_{\bar{n}}de_{cs} \, \delta(m_{\rm gr.}^2 - e_{\bar{n}} - e_{cs}) \left| J(e_{\bar{n}},\mu^2) \right| \mathcal{C}(e_{cs}z_{\rm cut},\mu^2)$$

In Region 1, shape of distribution depends only on jet and collinear-soft functions, which are independent of Q

$$\times \left[1 + \mathcal{O}\left(z_{\text{cut}}, \frac{m_{\text{gr.}}^2}{z_{\text{cut}}Q^2}\right)\right], \quad (15)$$

Centauro

$$d_{ij} = (\Delta \bar{\eta}_{ij})^2 + 2\bar{\eta}_i \bar{\eta}_j (1 - \cos \Delta \phi_{ij})$$

 $d_{ij} = (\Delta \bar{\eta}_{ij})^2 + 2\bar{\eta}_i \bar{\eta}_j (1 - \cos \Delta \phi_{ij}) , \qquad d_{ij} = \min(E_i^{2p}, E_j^{2p}) \frac{1 - c_{ij}}{1 - c_B} , \qquad d_{iB} = E_i^{2p}$

where $c_{ij} = \cos \theta_{ij}$ and $c_R = \cos R$.

$$d_{ij} = \min(p_{Ti}^{2p}, p_{Tj}^{2p}) \Delta R_{ij}^2/R^2 \;, \qquad d_{iB} = p_{Ti}^{2p} \;\; extsf{VS.} \qquad ar{\eta}_i \equiv 2\sqrt{1 + rac{q \cdot p_i}{x_B P \cdot p_i}} \quad \stackrel{ ext{Breit}}{\longrightarrow} \quad rac{2p_i^\perp}{p_i^+} \;, \qquad extsf{VS.}$$

where

anti- $k_T(LI)$ anti- $k_T(SI)$ Centauro struck quark | proton $\theta = 0$ Cluster at pi has low P_T in $3\pi/4$ Breit frame, smaller d_{ii} $\pi/2$

Doesn't preferentially capture struck quark

Not longitudinally invariant

Figure 2. Jet clustering in the Breit frame using the longitudinally-invariant anti- $k_T(LI)$, Centauro, and spherically-invariant anti- $k_T(SI)$ algorithms in a DIS event simulated with Pythia 8. Each particle is illustrated as a disk with area proportional to its energy and the position corresponds to the direction of its momentum projected onto the unfolded sphere about the hard-scattering vertex. The vertical dashed lines correspond to constant θ and curved lines to constant ϕ . All the particles clustered into a given jet are colored the same.

27

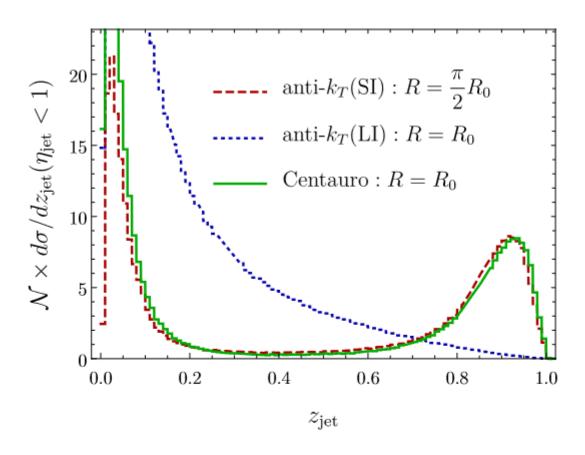
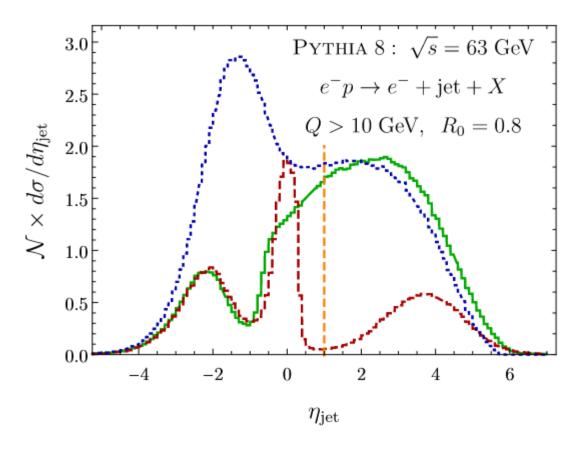



Figure 4. Pseudorapidity (top panel) and momentum fraction z_{jet} (bottom panel) of jets clustered with anti- $k_T(\text{LI})$, anti- $k_T(\text{LI})$ and Centauro algorithms in the Breit frame. Here \mathcal{N} is an overall normalization constant chosen to improve readability and is the same for all curves in a graph.

Centauro

Doesn't preferentially capture struck quark

clustered into a given jet are colored the same.

$$d_{ij} = (\Delta \bar{\eta}_{ij})^2 + 2\bar{\eta}_i \bar{\eta}_j (1 - \cos \Delta \phi_{ij})$$

where

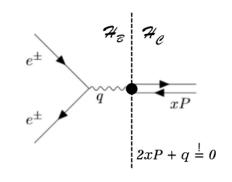
$$d_{ij} = (\Delta \bar{\eta}_{ij})^2 + 2\bar{\eta}_i \bar{\eta}_j (1 - \cos \Delta \phi_{ij}) , \qquad d_{ij} = \min(E_i^{2p}, E_j^{2p}) \frac{1 - c_{ij}}{1 - c_R} , \qquad d_{iB} = E_i^{2p}$$

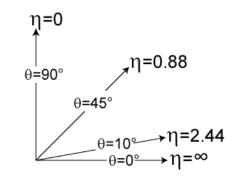
where $c_{ij} = \cos \theta_{ij}$ and $c_R = \cos R$.

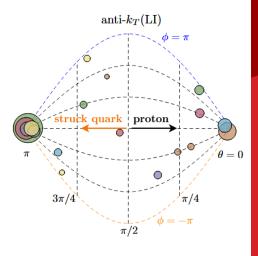
$$d_{ij} = \min(p_{Ti}^{2p}, p_{Tj}^{2p}) \Delta R_{ij}^2 / R^2 , \qquad d_{iB} = p_{Ti}^{2p} \quad \mathsf{VS}. \qquad \bar{\eta}_i \equiv 2\sqrt{1 + \frac{q \cdot p_i}{x_B P \cdot p_i}} \quad \frac{\mathsf{Breit}}{\mathsf{frame}} \quad \frac{2p_i^+}{p_i^+} , \qquad \mathsf{VS}.$$

$$\mathsf{anti-}k_T(\mathsf{LI}) \qquad \mathsf{Centauro}$$

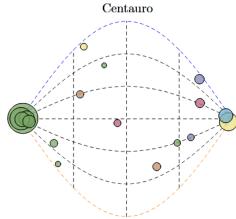
$$\mathsf{contauro} \qquad \mathsf{anti-}k_T(\mathsf{SI})$$

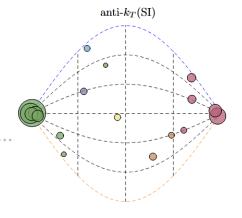

$$\mathsf{frame}, \, \mathsf{smaller} \, \mathsf{d}_{ij}$$


$$\mathsf{frame}, \, \mathsf{frame}, \, \mathsf{frame},$$

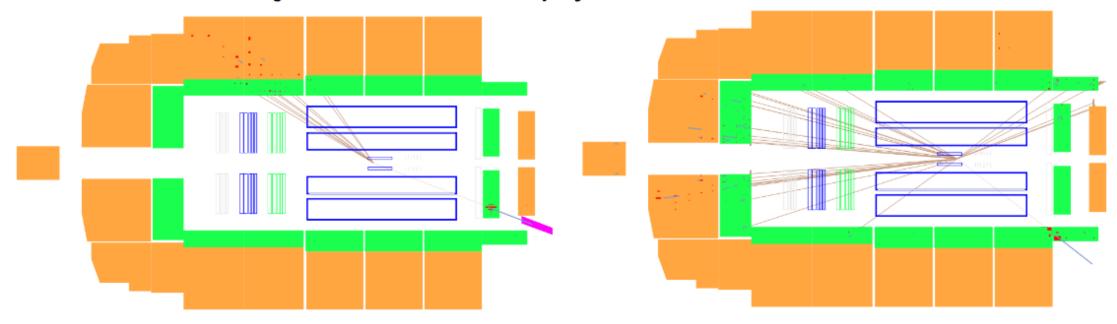

Figure 2. Jet clustering in the Breit frame using the longitudinally-invariant anti- $k_T(LI)$, Centauro, and spherically-invariant anti- $k_T(SI)$ algorithms in a DIS event simulated with Pythia 8. Each particle is illustrated as a disk with area proportional to its energy and the position corresponds to the direction of its momentum projected onto the unfolded sphere about the hard-scattering vertex. The vertical dashed lines correspond to constant θ and curved lines to constant ϕ . All the particles

29





- Jet algorithm with asymmetric clustering measure
 - Treat current hemisphere and beam hemisphere differently
- Typical longitudinally-invariant jet algorithms cluster in (rapidity, azimuthal angle) space and fail to capture the born-level configuration in the Breit frame
 - Particles close to struck-parton direction have divergent rapidity, and therefore divergent distance between each other!
 - Makes study of single-jet Born level configuration impossible!
- Use spherically invariant clustering (polar angle, azimuthal angle) in the struck-parton direction and longitudinally invariant in beam direction
- Tends to create one hard jet in struck-parton direction and many weak single particle jets in beam direction, which can easily be filtered away



1-jettiness

$$au_1^b = rac{2}{Q^2} \sum_{i \in X} \min\{xP \cdot p_i, (q + xP) \cdot p_i\}$$

Visualisation of the 1-jettiness with event displays

- DIS 1-jet configuration
- Most HFS particles collinear to scattered parton
 - ightarrow Small au_1^b

- Dijet event
- More and larger contributions to the sum over the HFS

$$ightarrow$$
 Large au_1^b

z_{cut}	0.05	0.1	0.2
Pythia8.3	0.31%	1.3%	6.3%
Pythia+Vincia	0.52%	1.7%	6.9%
Pythia+DIRE	0.47%	1.2%	5.6%
SHERPA+AHADIC++	0.03%	0.31%	3.6%
SHERPA+LUND	0.09%	0.59%	4.9%
HERWIG	0.038%	0.36%	3.6%
HERWIG+Merging	0.04%	0.39%	3.6%
HERWIG+MC@NLO	0.04%	0.39%	3.8%
DJANGO (Gen.)	0.09%	0.5%	4.0%
RAPGAP (Gen.)	0.07%	0.4%	3.7%
DJANGO (Det.)	1.0%	2.3%	7.8%
RAPGAP (Det.)	0.9%	2.2%	7.6%
H1 Data	1.0%	2.3%	7.7%

Table 1: Percentage of events that fail grooming. Rapgap and Djangoh are listed for both detector and generator level.