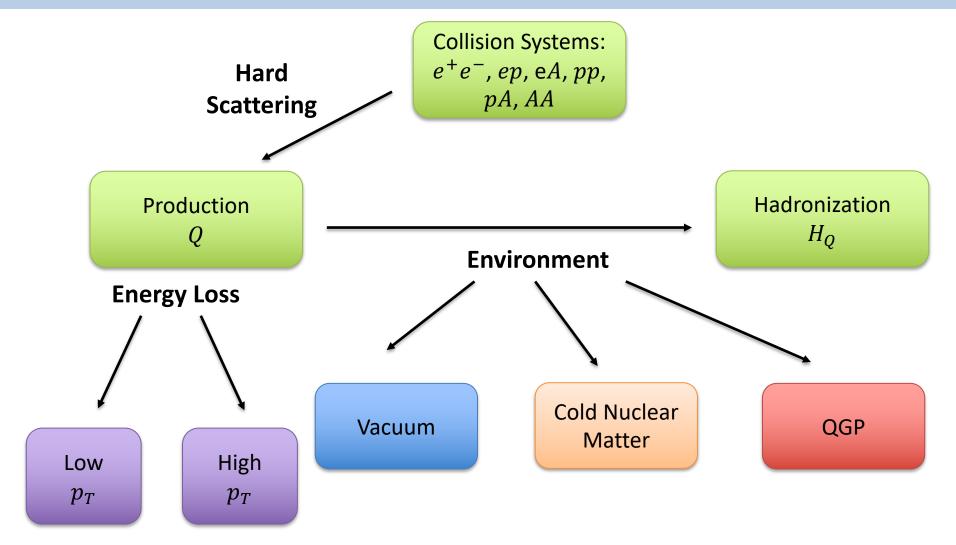
Investigation of Beauty Hadronization Universality from Vacuum to QGP

Zhaozhong Shi

Los Alamos National Laboratory

Email: zhaozhongshi@lanl.gov

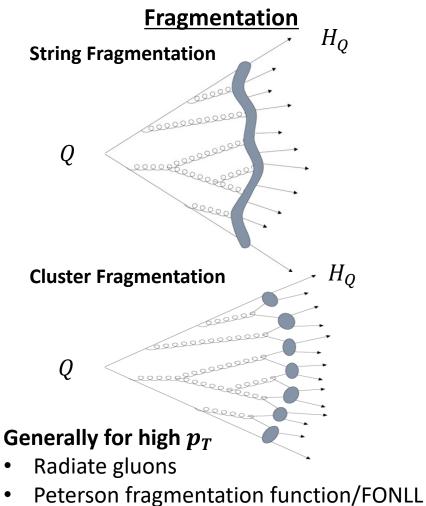

Advancing the Understanding of Non-Perturbative QCD Using Energy Flow Stony Brook University, CFNS

09/20/2022

Open Heavy Flavor Physics

Basic framework of heavy flavor physics for different models

Heavy Flavor Hadronization



- **Generally non-perturbative** → no first principle calculations available yet
 - Phenomenology: Different models made to describe hadronization
 - **■** Large discrepancies among different models → significantly limit our ability to interpret heavy flavor data

Fragmentation vs Recombination

- Peterson fragmentation function/FONLL framework
- Applicable in vacuum

Recombination

Generally for low p_T

- Heavy quark comoving light quark
- Significant contribution from the light quark momentum to the hadron momentum
- Occur in dense color environment

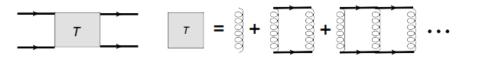
Hadronchemistry Models

Examples of Hadronization Models

- Statistical Hadronization Model
- Lund String Model
- Quark Coalescence Model

TAMU Model

- Fokker-Planck framework
- Heavy-light quark T-matrix interaction for transport coefficients
- Collisional energy loss only
- Hadronization recombination + FONLL fragmentation

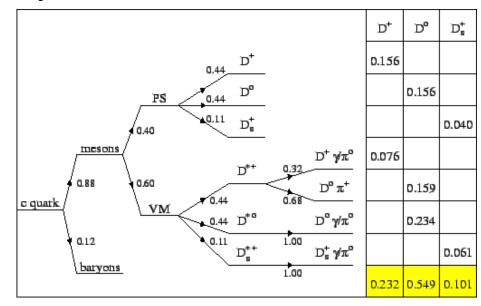

Q - q T-Matrix Schematics

Cao, Sun, Ko Model

- Advanced Langevinhydrodynamics framework
- Both elastic and inelastic energy loss
- Comprehensive coalescence model + PYTHIA Peterson fragmentation model
- Strict energy-momentum conservation

Equal Velocity Combination

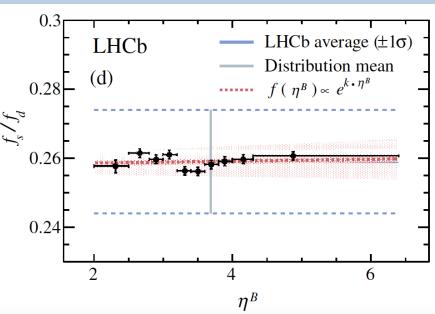
- Heavy and light quarks as constituent quarks with equal velocity approximation to form color neutral hadrons
- Light quark spectra extracted from light hadron data
- Heavy quark spectra obtained from FONLL
- Applicable to low p_T heavy flavor hadron in pp and PbPb collisions

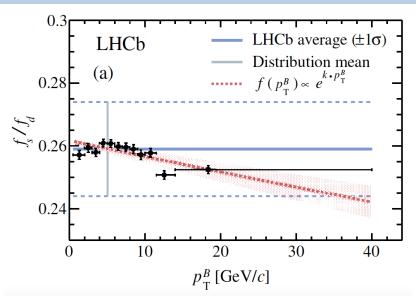

Experimental Observables

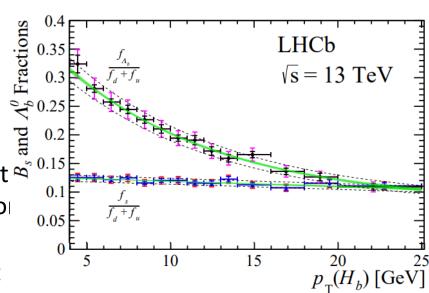
Heavy Quark Fragmentation Fraction

- Assume only heavy quark fragment into heavy flavor hadrons: $D_{q,g o H_O}(z) = 0$
- Heavy quark fragmentation function: $D_{Q \to H_Q}(z) \sim f(Q \to H_Q) \delta(1-z)$
- Heavy flavor hadron spectra: $\frac{d^3\sigma^{HQ}}{p_Tdp_Tdyd\phi} \sim f(Q \to H_Q) \frac{d^3\sigma^Q}{p_Tdp_Tdyd\phi}$
- Heavy quark fragmentation fraction $f(Q \to H_Q)$: the probability of a heavy quark Q turning into an open heavy flavor hadron H_Q
 - $\blacksquare f(Q \to H_Q)$ is a constant
 - Unity: $\sum_{H_Q} f(Q \to H_Q) = 1$

Particle Production Yield


- Direct access to fragmentation fraction
- Relative yield measurement to cancel systematic uncertainties
- Strange to non-strange meson ratio
- Baryon-to-meson ratio
- Require fully reconstructed charm and beauty hadrons via exclusive decay channels

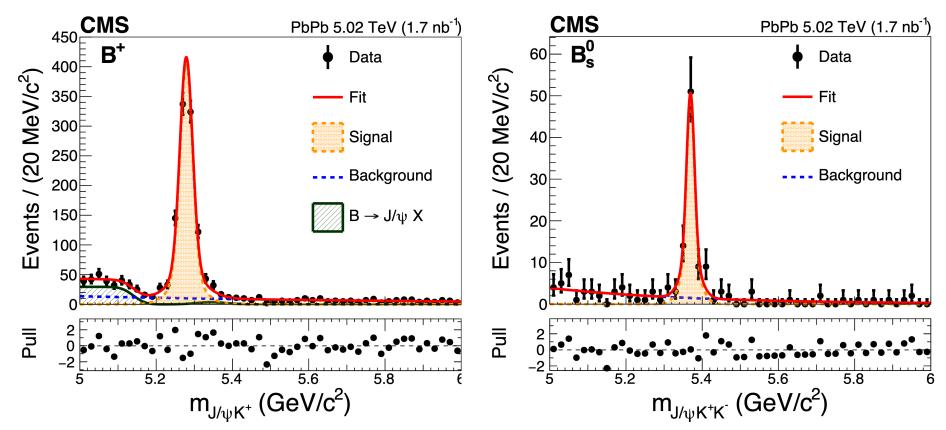

Beauty Hadronization in pp with LHCb



$$B^+=u\overline{b}$$
 , $B^0=d\overline{b}$, $B^0_s=s\overline{b}$, and $arLambda_b^0=udb$

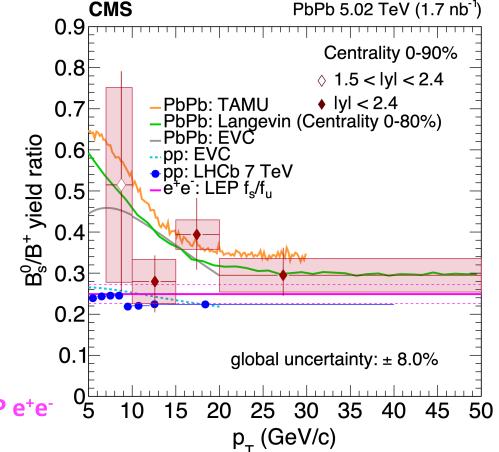
- Here, $f_{\Lambda_b} = f(b \to \Lambda_b^0)$, $f_S = f(b \to B_S^0)$, $f_d = f(b \to B^0)$, and $f_u = f(b \to B^+)$
- No significant η dependence on f_s/f_d
- f_s/f_d has sizeable p_T dependence with about ≈ 0.15 > 4σ significance in the forward rapidity region $\frac{0.1}{0.05}$
- Strong $f_{\Lambda_b}/(f_d+f_u)$ dependence at low p_T

Fragmentation fraction is **NOT** a constant



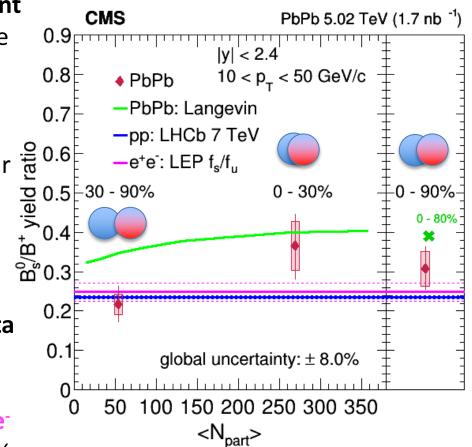
Fully Reconstructed B mesons with CMS

- Fully reconstructed B mesons via exclusive decay processes
- Application of machine learning to optimize the cuts based on topological variables
- Excellent tracking and vertexing performance and muon capabilities
- No hadronic particle identification
- First observation of $B_{\rm S}^0$ in heavy-ion collisions with a significance greater than 5σ



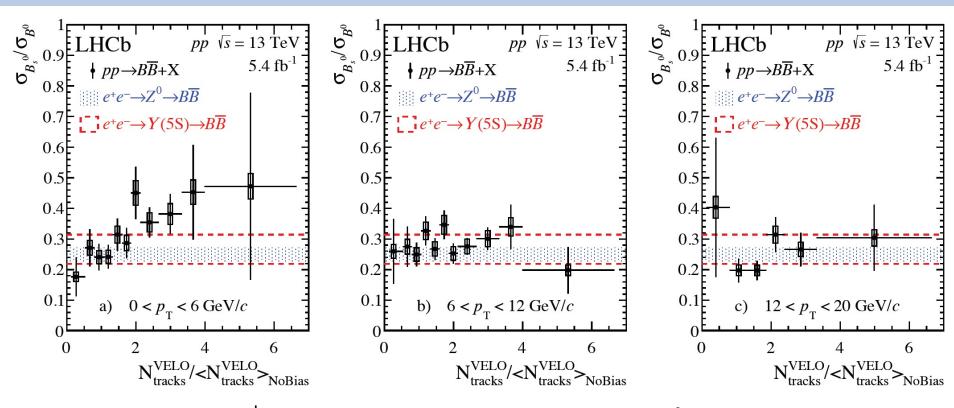
B_S^0/B^+ Ratio vs p_T in PbPb Collisions

- No significant p_T dependence within uncertainties
- Reasonably good agreement with theoretical models
 - Both central values and trends $(B_s^0/B^+ \downarrow \text{ as } p_T \uparrow)$
 - **TAMU > Cao, Sun, Ko > EVC**
 - lacktriangle Models diverge at very low p_T
 - \blacksquare Cao, Sun, Ko has the best agreement with at high p_T
 - **EVC in pp** agrees with **LHCb pp**


- Inconclusive about strangeness enhancement for beauty hadronization in QGP
- Different $\sqrt{s_{NN}}$: 5.02 vs 7 TeV \rightarrow Better to compare with the CMS pp (ongoing)
- \blacksquare Need about 4 times more data to have an observation of > 3 σ
- **☞** Coalescence needed: fragmentation alone is insufficient to describe the data

B_S^0/B^+ Ratio vs Centrality in PbPb Collisions

- First centrality dependence measurement
 - No significant centrality dependence
- Overall good consistency between data and theoretical models
 - **Cao, Sun, Ko** overall consistent to our data in 0 − 30% and 0 − 90%
 - **Cao, Sun, Ko** overshoots the peripheral 30 − 90% measurement
- Compatible to LHCb pp and LEP e^+e^- data within 1.3 σ
 - pp and e⁺e⁻ data are consistent
 - Excellent agreement with pp and e⁺e⁻ data with peripheral centrality 30 90%
 - 1.3 σ above pp reference at 0 30%



- Hint of strangeness enhancement of beauty hadronization
 - More data from Run 3 and HL-LHC to confirm the conclusion

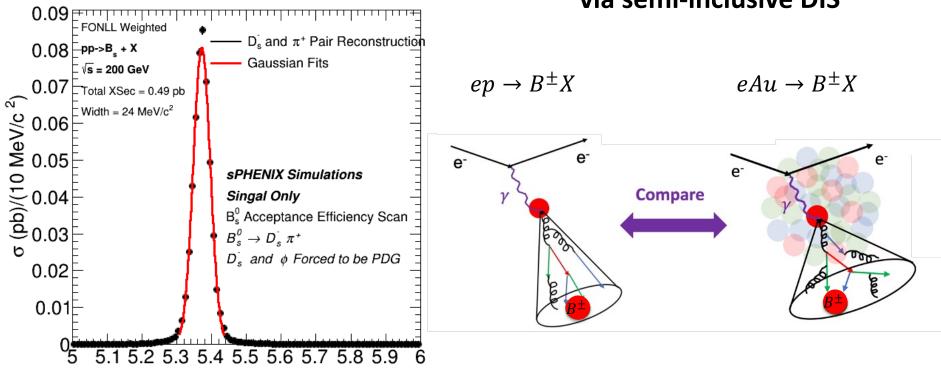
Ongoing Efforts at the LHC: CMS and LHCb

Fully reconstructed B^+ in pp collisions down to $p_T=0$ GeV/c

- Inclusive beauty production cross section at the LHC
- Test pQCD calculations

 B_s^0/B^+ or B_s^0/B^0 over a wide range of p_T and event multiplicity with high precision

- Study beauty hadronization mechanism
- Test theoretical model calculations



Future Opportunities: sPHENIX and EIC

sPHENIX B_s^0 Signal Statistics Projection

B_s Invariant Mass (GeV/c²)

b-hadron production at EIC via semi-inclusive DIS

- Possible fully reconstructed $B_s^{\,0}$ in pp and AuAu with sPHENIX at RHIC energy
- b-hadron measurement in ep and eA at the EIC to study cold nuclear medium modification on the beauty quark fragmentation function

Summary

Hadronization is non-perturbative

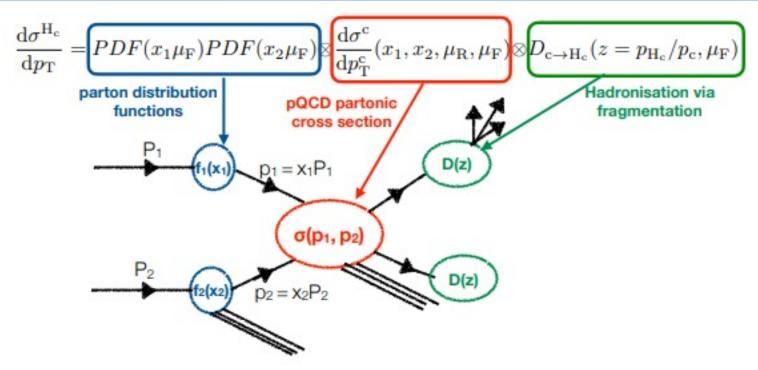
- No first principle calculation yet available
- Heavy quark hadronization mechanisms: fragmentation and recombination
- Different models to explain heavy quark hadronization

Fully reconstructed b-hadron yield ratios in e⁺e⁻, pp, and AA collisions

- Investigate beauty hadronization from vacuum to QGP
- Beauty fragmentation fraction vs p_T : significant in pp and insignificant in AA
- First observation of fully reconstructed B_s^0 in AA collisions with CMS
- Theoretical models all reasonably well describe experimental data
- Hint of strangeness enhancement needs to be confirmed
- Coalescence is needed to describe heavy-ion collisions

Outlook

- Ongoing differential and precise measurement over B_S^0/B^+ in pp
- High precision b-hadron measurements in PbPb with Run 3 and HL-LHC data
- b physics program with sPHENIX at RHIC energy
- EIC to study cold nuclear matter effects on beauty hadronization in eA

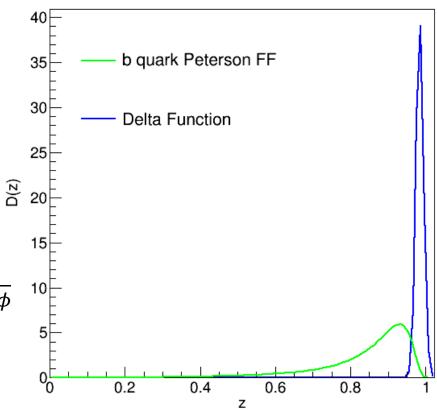


Back Up

QCD Factorization Theorem

- Foundation of perturbative QCD
- Hard processes are perturbatively described by pQCD partonic diagrams
- Soft processes are non-perturbative but can be factorized
 - Initial state dynamics described by parton distribution function (PDF)
 - Final state hadronization described by fragmentation function D(z)
 - PDF and D(z) are assumed universal
- Applicable to e^+e^- , ep, and pp colliders

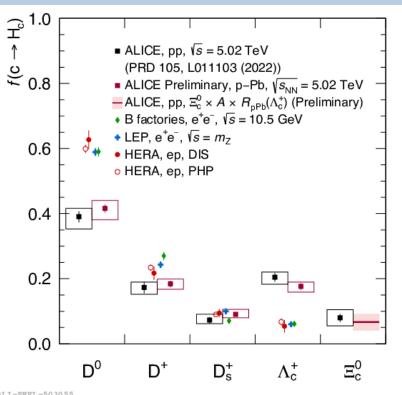
Fragmentation Fraction Derivation

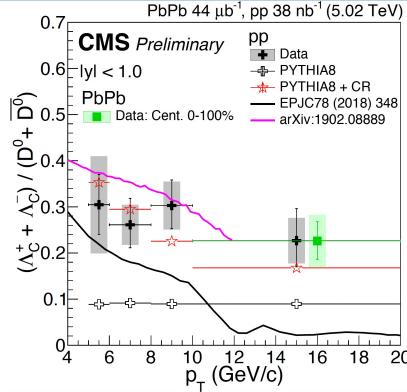

• Peterson fragmentation function takes the form:

$$D_Q^{H_Q}(z) = \frac{1}{z[1 - 1/z - \epsilon_Q/(1 - z)]^2}$$

- Heavy quarks generally have a small ϵ_Q
 - \blacksquare Charm: $\epsilon_c = 0.03$
 - \blacksquare Beauty: $\epsilon_b = 0.005$
- For $\epsilon_Q \to 0$, $D_Q^{H_Q}(z) \to \delta(1-z)$ and thus $\frac{d^3\sigma^{H_Q}}{p_Tdp_Tdyd\phi} \sim f(Q \to H_Q) \frac{d^3\sigma^Q}{p_Tdp_Tdyd\phi}$ 10
- The energy sum rule

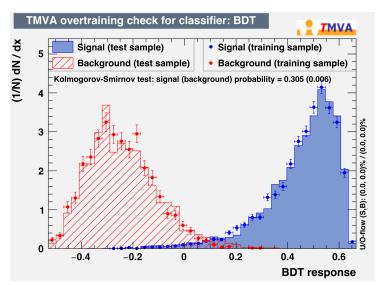
$$\sum_{H_Q} \int_0^1 D_Q^{H_Q}(z) dz = 1 \text{ leads to}$$

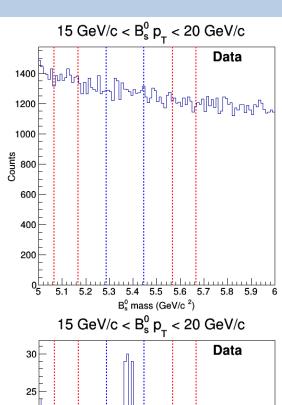

$$\sum_{U} f(Q \to H_Q) = 1$$

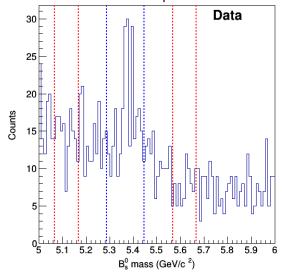


QCD Factorization Breaking for Charm Sector

- Hadronization universality: $D(z,Q^2)=D_{e^+e^-}(z,Q^2)=D_{ep}(z,Q^2)=D_{pp}(z,Q^2)$
- Significant enhancement and suppression in pp by ALICE at the LHC
- Broken due to quark coalescence mechanism? Additional dependence on color charge density: $D_{pp}(z,Q^2) \rightarrow D_{pp}(z,Q^2,n_c)$?
- Significant enhancement of Λ_c^+/D^0 and D_s^+/D^0 also observed by STAR at RHIC and ALICE at the LHC in AA collisionsx

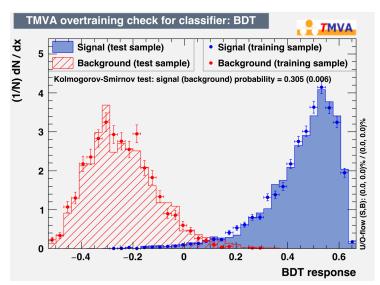

CMS Detector

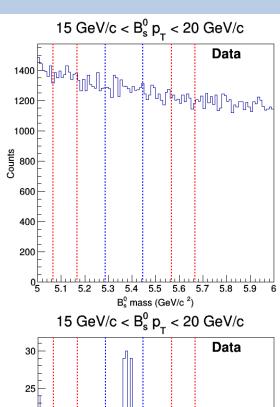

Analysis challenges

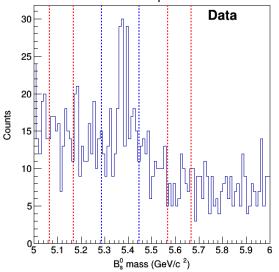

- Before selections, B = 20672 and S = 26
- Require to obtain significant B to S rejection in order to observe B_S^0 signal in the PbPb data

Boosted Decision Tree Machine Learning Algorithm

- Excellent Signal/Background separation without overtraining
- A random BDT > 0.1 selection returns a visible signal
- Achieve better than 10³ to 1 for the B to S rejection

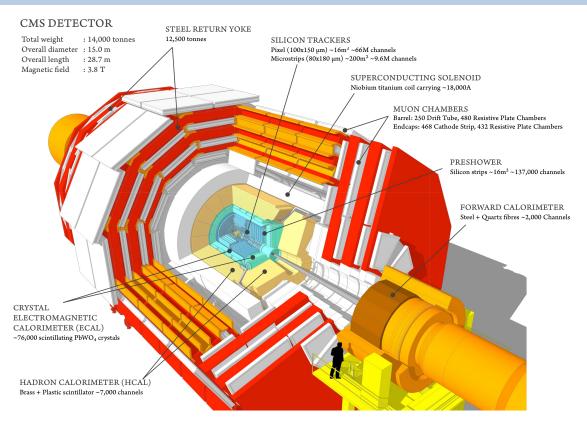

Machine Learning Performance


Analysis challenges

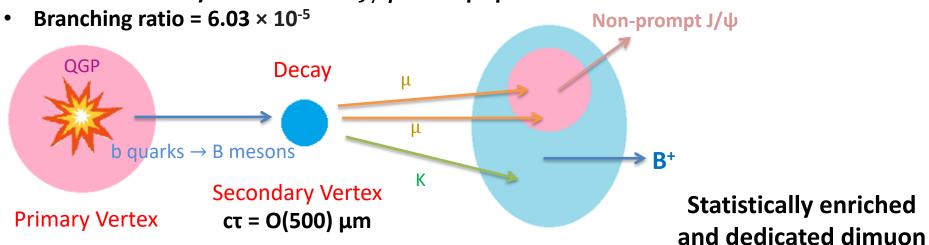

- Before selections, B = 20672 and S = 26
- Require to obtain significant B to S rejection in order to observe B_S^0 signal in the PbPb data

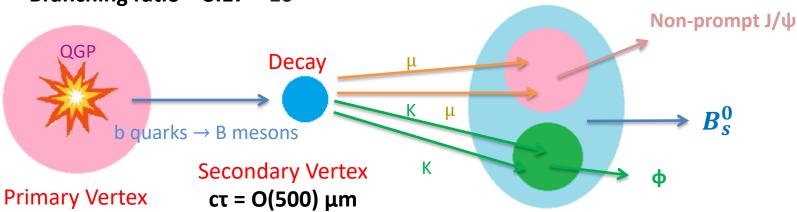
Boosted Decision Tree Machine Learning Algorithm

- Excellent Signal/Background separation without overtraining
- A random BDT > 0.1 selection returns a visible signal
- Achieve better than 10³ to 1 for the B to S rejection



Fully Reconstructed B_S^0 with CMS at the LHC


- Fully reconstructed B mesons from decay chain involve J/ψ
- Take advantage of excellent muon and tracking capabilities
- Not using hadronic particle identification or calorimeter information
- Constrain intermediate state resonances to improve the results
- Apply multivariate approach with machine learning techniques


Analysis Strategies

• B^+ : via the decay channel $B^+ o J/\psi K^+ o \mu^+ \mu^- K^+$

• B^0_s : using the decay channel $B^0_s o J/\psi\phi o\mu^+\mu^-K^+K^-$

• Branching ratio = 3.17×10^{-5}

triggered datasets from

2018 LHC PbPb run