

Production of HF hadrons and npQCD at RHIC

Sooraj Radhakrishnan Kent State University/Lawrence Berkeley National Laboratory CFNS Workshop, Sep 19-22, 2022

Advancing the Understanding of Non-Perturbative QCD Using Energy Flows

Heavy flavor to study npQCD

- ► Probes that cover both low and high momentum ranges, production cross-sections amenable to pQCD calculations
- ► Ideal probes of a number of npQCD effects
 - QGP transport, energy loss
 - Color screening
 - ► Hadronization
 - Onia production mechanism in p+p

Strong experimental focus recently at both RHIC and LHC experiments

Heavy flavor at RHIC

Phys. Rev. Lett 118 212301

• STAR Heavy Flavor Tracker (HFT) with ultra thin MAPS sensors. Provides excellent vertex resolution for HF hadron reconstruction. MTD for muon identification

Heavy flavor at RHIC

- MAPS based vertexing system also part of upcoming sPHENIX experiment
- Excellent track pointing resolution and momentum resolution

HQ Diffusion in QGP

- Thermalization times for heavy quarks delayed, by factor of $m_{\mbox{\scriptsize Q}}/T$
- Flow of HF hadrons sensitive to coupling strengths of HQs to the expanding medium
- Probes long wavelength dynamics in the QGP
- Large v₂ values measured for D mesons at RHIC
- Consistent values with light quarks for NCQ scaled values

Phys. Rev. Lett 118 212301

HQ Diffusion coefficient

- Spatial diffusion coefficient $2\pi TD_s$ constrained to be ~ 2 4 near T_{pc} -> strong coupling
- Diffusion coefficient relates to the long range part of interactions between the HQs and the medium, for eg., the screened confining potential Ann. Rev. Nucl. Part. Sci. 69 (2019) 417-445
- Temperature dependence not well constrained
- How about bottom hadron flow? Can there be a consistent description?

Temperature dependence of D_s

- Large D meson v₁
 measured at RHIC
- Develops early compared to v₂, could provide constraints to temperature dependence of D_s

- Different temperature profile for the fireball at lower collision energies
- Could also be an useful probe to study T dependence

Bottom flow at RHIC

- Smaller values of v₂ for electrons from b hadron decays, experimental precision needs to improve
- b-quarks taking longer to thermalize
- Can provide further understanding to HQ diffusion and interactions in the QGP

Heavy flavor energy loss

S. Cao, J. Nucl. Phys. A.(2013) 02,100

- At large p_T radiative energy loss dominates and both HF and LF show similar behavior
- Significant collisional energy loss also contributes at lower p_T
- Need precision measurements and differential measurements (along with ν_n measurements) to pin down heavy quark interactions in the QGP

Heavy flavor energy loss

- At large p_T radiative energy loss dominates and both HF and LF R_{AA} show similar behavior
- Significant collisional energy loss also contributes at lower p_T
- Current measurements show consistent R_{AA} with light flavor hadrons
- Systematic uncertainties dominated by p+p reference

Heavy flavor energy loss

Phys. Rev. C 99, 034908 (2019)

- Models with collisional and radiative energy loss can describe the data
- Large uncertainties in data, models with different prescriptions can describe data
- Need better precision measurements, observables on jet substructure etc

JHEP 1810 (2018) 174

Mass dependence of energy loss

- Clear mass dependence of energy loss: agrees with less energy loss for b quarks in medium
- Expected from less radiative (and collisional) energy loss for bottom quarks

Heavy flavor tagged jets

 Jet substructure with HF hadrons, understand the flavor dependence of redistribution

CMS, Phys. Lett. B 730 (2014) 243

- Ratios of radial distributions in central to peripheral collisions consistent with unity for D⁰ tagged jets
- Extending the analysis to lower Dokinematics is essential to study Dodiffusion

Heavy flavor as probes to study hadronization

Ann.Rev.Nucl.Part.Sci 58.177-205

- Heavy quarks produced early in collisions and have small thermal production during medium evolution
- Ideal to study modification in particle ratios and hadronization
- Coalescence hadronization used to explain enhanced baryon/meson ratios for light hadrons in heavy-ion collisions
- Will also lead to enhancement of strange hadrons

Non-universality of heavy quark FFs

- Breaking of universality of charm fragmentation fractions
- Strong enhancement of Λ_c production in p+p and p+Pb collisions for $p_T < 8$ GeV/c compared to fragmentation ratios measured at high p_T
- PYTHIA with color reconnection and thermal model with feed down from excited charm states describe data
- Multiplicity dependence, QGP impact, rapidity, collision energy dependence?

Phys. Rev. Lett. 127 (2021) 202301

Λ_c enhancement in HIC

Phys. Rev. Lett. 124, 172301 (2020)

- Strong enhancement relative to PYTHIA in Au+Au collisions at RHIC
- Similar trend as seen for B/M ratio enhancement for light flavor hadrons
- Consistent with coalescence model calculations

Strange D meson production

- Clear enhancement relative to p+p values
- CR has no impact for Ds/D⁰ ratios
- Indication that coalescence hadronization is relevant in charm sector in heavy-ion collisions at RHIC

Low pt yields and total charm cross-section

Coll. system	Hadron	${ m d}\sigma_{ m NN}/{ m d}y$ [µb]
Au+Au at 200 GeV Centrality: $10-40\%$ $0 < p_T < 8 \text{ GeV/}c$	\mathbf{D}_0	39 ± 1 ± 1
	$\mathbf{D}_{\mathbf{n}}^{\pm}$	18 ± 1 ± 3
	Q ([©] D _s	15 ± 2 ± 4
	$\Lambda_{\rm c}$	40 ± 6 ± 27*
	Total:	112 ± 6 ± 27
p+p at 200 GeV	Total:	130 ± 30 ± 26

- Extrapolation to zero p_T using coalescence models at RHIC gives different values (with large errors) for Λ_c/D^0 ratios than in p+p
- ALICE observes strong enhancement in A + A at intermediate p_T, but integrated ratios consistent with p+p
- Need low p_T measurements at RHIC for better understanding of enhancement

Improvements from sPHENIX

- For most of the open HF measurements sPHENIX expected to give significant enhancement in precision and kinematic reach
- Hight precision measurements both in the charm sector and bottom sector for v_2 , v_1 , flow fluctuations, R_{AA} , jet fragmentation modifications ...

Improvements from sPHENIX

- Better precision and improved kinematic reach for Λ_c measurements in p+p and Au+Au
- Study multiplicity, system size dependences, and also potentially extend to lower pt

Color screening and quarkonia in A+A

Quarkonia production: probes color screening and deconfinement

- Phys. Lett. B **797** (2019) 134917
- High p_T suppression similar at RHIC and LHC: dissociation from color screening
- Low p_T suppression less at LHC than at RHIC: larger regeneration component at LHC from larger total charm cross-section

Sequential suppression of Y

Less regeneration contribution for Y at RHIC (lower b cross-section)

- Observation of sequential suppression of Y at RHIC
- Similar suppression for Y(1S) at LHC and RHIC, smaller suppression for Y(2S) at RHIC
- Models describe data, but large errors too (including from CNM effects)

J/W suppression at lower collision energies

 Collision energy dependence can help constrain the dissociation and regeneration contributions for J/Ψ modification

 Better precision for new measurement at 54.4 GeV compared to BES-I results

- No significant energy dependence of J/ψ R_{AA} below 200 GeV
- Transport model with both dissociation and regeneration effects describes the data
- Lower BES-II energies could also be measured

Collision system dependence of J/W suppression

- · Large isobar dataset, about 4 billion minimum bias events.
- Ideal to study system size and geometry dependence of J/ψ suppression

STAR, Phys. Lett. B 825 (2022) 136865 STAR, Phys. Lett. B 797 (2019) 134917 STAR, Phys. Lett. B 771 (2017) 13

250

300

350

400

200

50

- J/ψ R_{AA} consistent between Au+Au, Cu+Cu and Isobar collisions at similar N_{part}
- J/ ψ suppression driven by N_{part}

J/W v₂ as probe of regeneration contribution

- Non zero J/ψ v₂ could arise from medium interactions of deconfined charm quarks
- Can give additional constraints to the regeneration component

- Non zero J/Ψ v₂ observed at LHC
- STAR measurements at RHIC consistent with zero, value = 0.003 ± 0.017 (stat.)±0.010(sys.)
- Precision can be improved with RHIC runs 2023-25

Potential improvements from Run 23 — 25

 Improved precision measurements for quarkonia production and flow possible from high statistics RHIC runs in 2023 - 25

- Factor of 17 (1.5) improvement in statistics compared to existing dielectron (dimuon) measurements with Run 23+25 data from STAR
- Constrain screening dynamics and temperature of the medium

- Lower binding energy for ψ(2S) compared to J/ψ and Y states
- Sensitive to regeneration contribution and temperature profile of QGP

Potential improvements from Run 23 — 25

- Precision measurement for J/Ψ v₂ also possible
- Better constraint on the regeneration contribution for J/Ψ at RHIC

Quarkonia production and npQCD

- Quarkonia production in elementary collisions probes both perturbative and non-perturbative regimes of QCD
- Production of $Q\overline{Q}$ pair driven by pQCD, while evolution to quarkonia state is long distance non-perturbative process
- Due to large mass of heavy quarks, a non-relativistic QCD system

• Several models, production of $Q\overline{Q}$ pairs in color singlet (CSM) or color octet (COM) states, color evaporation model etc

Quarkonia production and npQCD

Need better precision and other observables to distinguish between models and to constrain matrix-elements of NRQCD

Phys. Rev. D 052009 (2019)

Quarkonia production in p+p collisions at RHIC

- Differential measurements of Y production in p+p vs p_T, rapidity and event activity
- New measurements of J/Ψ production vs jet activity
- Help understand quarkonia production mechanism
- Improved precision measurements, including of polarization, possible with data from 2023-25

Summary and Outlook

- Great progress over the years in heavy flavor measurements from RHIC
 - Improved constraint for $2\pi TD_s$ from v_2 and R_{AA} data (between 2 4 near T_{pc})
 - Mass hierarchy in energy loss, energy loss of b quarks less than c quarks
 - Modification of hadronization seen in A+A collisions from D_s and Λ_c measurements
 - Sequential suppression of Y states from color screening in QGP
 - Measurements indicate small regeneration of J/Ψ at RHIC energies
 - Differential and new measurements to understand quarkonia production mechanism in p+p
- High statistics runs in 2023 25
 - High precision measurements for charm and bottom hadron R_{AA}, v₂, HF jets ... possible with sPHENIX
 - Better understand hadronization through differential measurements
 - Improved precision Y R_{AA} and J/Ψ v₂ from Runs 23 25
 - Quantitatively understand QGP screening potential, mechanism of deconfinement, hadronization mechanism etc