Jupiter Missions as Probes of Dark Matter

Lingfeng Li Brown University Sep 15th 2022 Brookhaven National Lab

Based on arXiv:2207.13709 with JiJi Fan

Outline

- Introduction
 - About JupiterAbout DM
- DM capture by Jupiter and annihilation
- Motion & flux of electron in the magnetosphere
- **D**Numerical results
- □Summary & outlook

"HST" (VIS) "JWST" (IR)

Why Jupiter?

□ Most massive planet in the solar system: a big detector

"Clean" background: not as active as a star

QRelatively close: easier for both *in situ* and *ex situ* measurements

DA small and thin main ring

Towards *in situ* Measurements

1610 | Galileo Galilei | Telescope

1973 | Pioneer 10 | Flyby

1974 | Pioneer 11 | Flyby

1979 | Voyager 1 | Flyby (gravity assist)

1979 | Voyager 2 | Flyby (gravity assist)

1992 | Ulysses | Flyby (gravity assist) NO CAMERA

1995 to 2003 | Galileo | Orbit

2000 | Cassini-Huygens | Flyby (gravity assist)

2007 | New Horizons | Flyby

2015 | Hubble Space Telescope | Telescope observation

2016 | Juno Mission | Orbit

A lot of data, but for HEP? ⁴

In a Nutshell

I: DM captured by the potential well after elastic scatterings

II: DM accumulated inside Jupiter, annihilate to longlived mediator pairs III: The mediators reach the surface, injecting hard electrons into the magnetosphere

IV: Electron flux detected by Jupiter missions

Lingfeng Li 2207.13709

N

Capture

Optically thin in our case

DM Wind

DM-nucleon scattering Xsec

Geometric saturation Xsec $\sim 10^{-34}$ cm²

 $\tau_J = \frac{3}{2} \frac{\sigma_{\chi n}}{\sigma_{\rm sat}} \ll 1$

DM Capture Rate

Single scattering rate following <u>A. Gould, Astrophys. J., 321, 1987</u>

9

DM Annihilation inside Jupiter

Multiple scattering after capture, high density around the core

 $\langle \sigma_{\rm ann} v \rangle \lesssim O(10^{-27}) \, {\rm cm^3 \, s^{-1}}$, mostly from CMB spectrum distortion R. K. Leane, T. R. Slatyer, J. F. Beacom, K. C. Y. Ng, 1805.10305

annihilatio

2→2 annihilation to long-lived messengers ξ

Lingfeng Li 2207.13709

 $ar{\chi}\chi
ightarrow ar{q}q$ through $rac{g_{\chi}g_q}{\Lambda^2} \left(ar{\chi}\gamma^{\mu}\gamma^5\chi
ight) \left(ar{q}\gamma_{\mu}\gamma^5q
ight)$ is "forbidden", suppressed by $m_{\chi}^2 m_q^2/\Lambda^4 \& (g_{\chi}g_q)^2$

For a dark photon with kinetic mixing ϵ to SM photon, $c\tau \sim O(10^4)$ km means $\epsilon < 10^{-9}$:

Very elusive for lab experiments
 Too small for DM capture
 Go though Jupiter easily

Decay to electrons: also final states for leptonic ($\mu \rightarrow evv$) & hadronic ($\pi \rightarrow \mu v$, $K \rightarrow \pi \pi$)

Correction due to branching ratios of DM annihilation & mediator decays $\prod BR \equiv BR(2\chi \rightarrow 2\xi) \times BR(\xi \rightarrow e^+e^-)$

As DM thermalizes, they "leak out" via exponential tails in kinematic distributions: DM lighter than \sim 1 GeV evaporates significantly <u>A. Gould, 1990</u>

R. Garani, S. Palomares-Ruiz, 2104.12757

A Right Ω_{CDM} ?

Small annihilation for "WIMP miracle", may overclose the universe

Thermal way out: dark partner (ψ) with stronger coupling to the mediator:

<u>M. Garny, J. Heisig, B. Lülf, S. Vogl, 1705.09292</u> <u>R. D'Agnolo, D. Pappadopulo, J. Ruderman, 1705.08450</u> <u>R. D'Agnolo, C. Mondino, J. Ruderman, P. Wang 1803.02901</u> <u>H.C. Cheng, LFL, R. Zheng 1805.12139</u> Exponentially sensitive to the mass gap and the mediator mass, large flexibility.....

Non-thermal way out: early matter domination diluting DM generated

* We stay agnostic about DM production in this talk

Previous Studies on DM Capture

Good *ex situ* potential, e.g., Fermi-LAT, HAWC.

Easy to understand: Photons travel in straight lines

Spectroscopy & morphology

Lingfeng Li 2207.13709 collaboration, 180

<u>N. Giglietto, 0907.0541</u> <u>B. Batell, M. Pospelov, A. Ritz, Y. Shang, 0910.1567</u> <u>P. Schuster, N. Toro, N. Weiner, I. Yavin, 0910.1839</u> <u>J. L. Feng, J. Smolinsky, P. Tanedo 1602.01465</u> <u>V. Brdar, J. Kopp, J. Liu, 1607.04278</u> <u>R. K. Leane, K. C. Y. Ng, J. F. Beacom, 1703.04629</u> <u>HAWC collaboration, 1808.05624</u> <u>R. K. Leane, T. Linden, 2104.02068</u> and many more!

The Sun ✓ : Massive and close. X: Higher background, high temperature that evaporates light DM Neutron Neutron stars: Stars ✓ :Dense and massive X: Too far away & systematics

Motion in the Magnetosphere

Electrons/positrons produced will be hold by the magnetic bottle effect.

Trapped inside for a long time (≫ sec) rather than escaping

 \rightarrow The origin of the radiation belt

Three basic modes inside an approximate dipole field

Lorentz force

Gyration around field lines (\gg kHz)

Magnetic mirror/bottle effect **Bounce** between two mirror points (~ Hz)

Gradience of the B field Drift in the azimuthal/longitudinal direction (< mHz)

M. Schulz, L. J. Lanzerotti, 1974

Phase Space Parameters

17

At least 3 "physical" parameters to describe the phase space: 1) E: Kinetic energy

2) L: Mcilwain L-parameter

[C. E. McIlwain, 1961]

Lines with L × radius in the magnetic equator plane if it is dipole

For the time scale considered for hard electrons, limited on the same L-shell for all the time (bounce & drift)

Phase Space Parameters

3) α_{eq} : Equatorial pitch angle

 $B \blacktriangle$

Small α_{eq} : inside loss cone mirror point within atmosphere

Large α_{eq} : outside loss cone mirror point away from the atmosphere & long-lived

magnetic equator

Loss Cone

The loss cone shrinks with L e.g., $\alpha_{eq} > 0.75$ (0.47) for L=1.2 (1.5)

Diffusion Equation

absorption reflectio

f = Phase space density

A. M. Lenchek, S. F. Singer, R. C. Wentworth, 1961 Source term: averaged over $\frac{df(L, E, \sin \alpha_{\rm eq})}{dt} = \langle I \rangle_{\rm trajectory}$

Friction terms: energy loss $-\frac{\partial}{\partial E}\left(\frac{dE}{dt}f\right) - \frac{\partial}{\partial\sin\alpha_{eq}}\left(\frac{d\sin\alpha_{eq}}{dt}f\right)$ with time (number conserving)

D. Santos-Costa, S. A. Bourdarie, 2001

Electron number loss (and its time scale)

 $\tau_{\rm loss}^{-1} f + {\rm diffusion \ terms}$ Suppressed for our discussion

Q. Nenon, A. Sicard, S. Bourdarie, 2017

³ s⁻¹ * The volume is large to compensate

20

Source Term

Injected electrons' phase space distribution

absorption

Synchrotron Friction

Fast energy loss for hard electrons > O(10) MeV $|B| \sim O(Gauss)$

Loss Term: Untrapped Scenario

Surface field twisted by higher moments

J. E. P. Connerney, S. Kotsiaros, R. J. Oliversen, J. R. Espley, J. L. Joergensen, P. S. Joergensen et al., 2018

 $au_{
m loss} \sim R_J \sim \mathcal{O}(0.2) \; {
m sec}$

(Expected lifetime of electrons)

Quasi-Trapped Scenario

Meet untrapped regions/ fall in the local loss cone during the azimuthal drifting

Electron lifetime set by drift period, lost before losing energy significantly via synchrotron radiation

 $\tau_{\rm loss} \lesssim \frac{\mathcal{O}(10^4)}{E/100 \text{ MeV}} \sec \ll \tau_E|_{\rm sync}$

K. Wang, S. J. Bolton, S. M. Gulkis, S. M. Levin, 2002 P. Kollmann, G. Clark, C. Paranicas, B. Mauk, E. Roussos, Q. Nenon et al, 2021

Fully-Trapped: Spatial Distributions

F: Flux predicted in each position

cm² s⁻¹

When $L \in [1.3, 1.5^+]$ and near the magnetic equator, the loss effect is not as significant as the synchrotron friction:

 $\tau_{\rm loss} \gtrsim \mathcal{O}(10^5) \, {\rm sec} \gtrsim \tau_E |_{\rm sync}$

Enough paper & pencil works on Earth

Let's launch to Jupiter now!

Galileo Probe (1989-1995)

Lingfeng Li 2207.13709

Juno Mission (2011-)

Mission overview

Galileo probe: one way mission
Dive into the atmosphere
Energetic Particle Investigation (EPI)
Sensitive to MeV-GeV charged particles

Juno: orbiter still works
Can be very close to the surface
No specific relativistic particle detectors
Hard electron from Radiation Monitoring (RM) investigation

Relate DM Model with Data

GeV-scale electrons leave data with precise space/time stamps.

Hit rate (s⁻¹) = electron flux (cm⁻² s⁻¹)× effective area of detection (cm²)

Jupiter Mission Readouts

H. M. Fischer, E. Pehlke, G. Wibberenz, L. J. Lanzerotti, J. D. Mihalov, Science 272, 1996

Data never used for HEP before

Lingfeng Li 2207.13709

□Galileo Probe EPI: "Calorimeters" □Juno RM: CCD cameras

H.N. Becker, D. Santos-Costa et al., Geophys. Res. Lett. 44, 2017

Sensitivity

No precise spectroscopy: Higher energy \rightarrow higher penetration rates

Juno SRU CCD image from relativistic particles @ Perijove 1, around maximum radiation intensity

H.N. Becker, D. Santos-Costa et al., Geophys. Res. Lett. 44, 2017

Limit (Fully Trapped)

Currently only Galileo probe data available covers the area L > 1.3 & close to the magnetic equator

Large count rates P1: O(10⁵ s⁻¹) & P2: O(10³ s⁻¹), Conservative but reliable

 10^{-34} Direc 10^{-35} Detection (SD) 10^{-36} BR $[\rm cm^2]$ 10^{-3} 10^{-3} $\sigma_{\chi n} \times$ 10^{-39} 10^{-40} $\gamma = 3, \ \Gamma_D = R_I^{-1}$ Fully Trapped 10^{-4} Not very sensitive $\tau_{\rm loss} \in [10^5, 10^8]~{\rm s}$ to a varying τ_{loss} : 10^{-42} 0.1 10 32

 m_{χ} [GeV

Insensitive to boost once the proper decay length is fixed

34

Limit (Quasi Trapped)

Both Juno (away from magnetic equator & the main radiation belt) and Galileo Probe (L ~ 1.1) provide quasi-trap region data

Bounds are stronger but higher systematics: only suggestive values

Need very precise magnetic field model and numerical simulations to find out.

Summary

DM accumulation inside Jupiter is a general prediction for GeV-scale DM, greatly enhancing annihilation rates.

Long-lived mediator with lifetime ~R_J decaying to electrons inject hard electrons to the radiation belt.

□*In situ* limits on DM-nucleon scattering Xsec comparable (spin-independent) or even stronger (spin-dependent) than best direct detection bounds.

Conversion of Solar Axions Behind Jupiter

Inspired by: <u>H. Davoudiasl, P. Huber, 0509293</u> <u>H. Davoudiasl, P. Huber, 0804.3543</u>

Solar axion, energy peaked at ~4 keV

2207.13709

Lingfeng Li

×Β.

-+~M~+

The high intensity B field + large converter volume from Jupiter

Difficulties: need high angular/energy resolution with hard X-rays, unknown Jupiter background, small window of observation.....

Positron Signal from Jupiter

Positrons escaping the magnetosphere hit earth orbit <u>E. N. Parker, 1958</u>

~13 month period of Jovian positrons, see e.g. <u>A. Vogt, N. E. Engelbrecht, B. Heber, A. Kopp, K. Herbst, 2110</u> Lingfeng Li 2207.13709

X-ray from Electrons

Backup Slides

DM Capture Rate

In the optical thin limit, DM captured with single scattering, described in <u>A. Gould, Astrophys. J., 321, 1987</u>

Optical depth $\tau_J = \frac{3}{2} \frac{\sigma_{\chi n}}{\sigma_{sat}}$ DM-nucleon scattering Xsec Geometric saturation Xsec ~ 10⁻³⁴ cm² Capture rate of the whole planet: $C_{1} = \sqrt{\frac{8\pi}{3}} \frac{n_{\chi} \tau_{J} R_{J}^{2}}{\bar{v}_{\chi}} \int_{0}^{R_{J}} \frac{4\pi r^{2} n_{n}(r)}{N_{n,J}} v_{J}^{2}(r) \left(1 - \frac{1 - e^{-A(r)^{2}}}{A(r)^{2}}\right) X[A(r)] dr$ $A(r)^2 \equiv 6v_J(r)^2 m_n m_{\chi} / [\bar{v}_{\chi}^2 (m_n - m_{\chi})^2]$ Suppression factor comes from the The exponential factor that maximizes when relative speed between Jupiter and DM has the same mass as a nucleon the DM Halo For multiple scattering, see J. Bramante, A. Delgado A. Martin, 1703.04043 40 C. Ilie, J. Pilawa, S. Zhang, 2005.05946

DM Capture Rate

After including the internal density profile & relative velocity, the capture rate takes the numerical form

$$C_1 \gtrsim 0.28 \sqrt{\frac{8\pi}{3}} \frac{n_\chi \tau_J R_J^2 v_J^2 (R_J)}{\bar{v}_\chi} \left(1 - \frac{1 - e^{-A(R_J)^2}}{A(R_J)^2}\right)$$

To get spin dependent rates for weaker constraints: axial-vector type interaction

 $\frac{g_{\chi}g_q}{\Lambda^2} \left(\bar{\chi}\gamma^{\mu}\gamma^5\chi\right) \left(\bar{q}\gamma_{\mu}\gamma^5q\right)$

$$\sigma_{\chi n} \approx 3.8 \times 10^{-39} \,\mathrm{cm}^2 \,\left(\frac{\mu_{\chi n}}{\mathrm{GeV}}\right)^2 \,\left(\frac{g_{\chi}g_q}{10^{-3}}\right)^2 \,\left(\frac{10 \,\mathrm{GeV}}{\Lambda}\right)^4$$

Possible to get a relevant scattering rate without violating collider bounds

Spatial Distribution

The (omnidirectional) electron flux is NOT the same along the same L-shell

The tube narrows as the field goes stronger

$$J(L,\theta_p) \simeq \iiint E^2 dE \, d\cos\alpha_{\rm eq} \frac{dA_{\rm eq}}{dA} \frac{(dt/dS)}{(dt/dS)_{\rm eq}} f$$

The coil gets denser when the field is strong Speed \propto cos $^{-1}$ α