EIC - Low Q² Taggers

Simon Gardner University of Glasgow Simon.Gardner@glasgow.ac.uk

Detector-1 Far Backwards Meeting 12 May 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Outline

Simulation Layout Acceptance Studies Resolution Studies Timepix4 Pitch Allpix²

Far-Backwards Tagger Layout

- Adapted DD4hep implementation.
- World set to vacuum so beamline volumes could be removed.
- Virtual detector planes added as thin vacuum calorimeters at magnet exits and tagger positions.

・ロト・(理ト・(ヨト・(ヨト・)の())

- Magnet beampipe radii increased to HCAL hole radius.
- Central solenoid currently taken out.

Far-Backwards Tagger Layout

- Acceptance of virtual tagger planes T0-T3 investigated.
- (Looking at the machine file, T3 looks impossible, or would need more machine components added.)


```
Q2ER_6
         Quadrupole
                           +9.000800
                                     1.400000
                                                          -0.008008
             9.000000 -0.0000000000 -0.000000
                                                  9.8808880 -0.8088888888
-0.008000
          -0.000000 334.836741 -2.081789 227.614027
                                                         +6.770146
02FR 6
         Drift
                           +9.500000
                                     0.500000
                                                          0 +0.000000000

    -0.008000

             9.580080 -0.8008008008 -0.080080
                                                  9.500000 -0.0000000000
-0.008000
                                -2.089754 220.895323 +6.667264
          -0.000000
                     336.922512
                          +15.000075 5.500075 -0.0180765389 +0.0000000000
D2ER 6
           14,999775 0.0180766389
                                                14,999775 0.0180766389
                                     0.049710
           0 018077 360 300606
                                 -2.177363 153.718775 +5.544492 +0.197333528
-0.049710
+0.00000
03ER 6
                          +37.700075 22.700000
                                                37.696067 0.0180766389
0.460027
                                     0.468027
-8.468861
          -0.018077
                    467 451398
                                 -2.538967
                                              8.401073
                                                         +0.857169
        Quadrupole
Q3ER_6
                          +38.300075 0.600000
                                                          0 +0.000000000
0.470873
                                     0.470873
                                                38.295969 8.0180766389
-0.465495 +0.600800 459.607101 +15.518698
                                               7.629325
                                                         +8.439892
-3.90130
ODCER 6
         Drift
                          +38.600075 0.300000
                                                          0 +0.0000000000
0.476296
         38.595928 0.0180766389
                                   0.476296
                                                38,595920 0.0180766389
-0.465495 +0.000000 450.347989 +15.353010
                                               7.379940
                                                         +0.392189
O CRAB ER Drift
                          +42.688875 4.888888
                                                          0 +0.000000000
0.548598 42.595266 0.0180766389
                                     0.548598
                                                 42.595266 0.0180766389
-0,465495 +0,000000 335,933938 +13,250503
                                               6.743940
OQCER_6 Drift
                          +42.900075
                                                          0 +0.0000000000
8 554821
         42 895217 0 0180766389
                                     8 554821
                                                 42 895217 B 8188766389
-0.465495 +0.000800
                     328.030943 +13.092815
                                               6.897925
                                                         -0.280092
04FR 6
         Quadrupole
                          +43.500075 0.600000
                                                          0 +0.0000000000
0.564866
        43.495119 0.0180766389
                                                43.495119 0.0180766389
                                     0.564866
-0.461090 +0.014660
                     306.526503 +22.521168
                                               7.426523 -0.606465
```

Outline

Simulation Layout Acceptance Studies

Resolution Studies Timepix4 Pitch Allpix²

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ≧ ○ � � �

Acceptance studies

- Beam spot tracked through virtual planes.
- 10σ rectangular cut made physics events.
- Using Jarda's QR generator at 18x275GeV and Derek Glazier's spectrosopy events at 5x10GeV.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Beamspot - 18GeV

▲□▶▲舂▶★≧▶★≧▶ 差 のへの

Beamspot - 18GeV

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQの

QR Distribution - 18GeV

Events from QR generator by Jarda.

QR E-log(Q²) Acceptance - 18GeV x-y 10σ cut

200

QR E-log(Q^2) Acceptance - 18GeV

x negative 10σ cut

900

Extending Acceptance - 18GeV

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Beamspot - 5GeV

・ ・ ロ ト ・ 週 ト ・ 夏 ト ・ 夏 ・ の への

Beamspot - 5GeV

▲□▶▲圖▶▲圖▶▲圖▶ = ● のへの

Spectroscopy Events - 5GeV

Events from generator by Derek Glazier: https://github.com/dglazier/elSpectro/ Also on ECCE event database somewhere. No beam effects or crossing angle in these events Crossing angle has since been implemented

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ● のへで

Spectroscopy Distribution - 5GeV

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Spectroscopy Acceptance $\phi(2S)$ - 5GeV

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Extending Acceptance $\phi(2S)$ - 5GeV

Almost doubling the number of $\phi(2S)$ events detectable.

Extending Acceptance

XYZ spectroscopy events show use for lower energy tagging. Much lower Brems background. Could make smaller tagger much closer for low E. Need to change dipole from cylinder?

Outline

Simulation Layout Acceptance Studies Resolution Studies Timepix4 Pitch

Allpix²

Interaction Reconstruction

- Machine learning approach using simple ROOT TMVA (DNN) neural network.
- Focus on Tagger 2.
- Two methods:
 - Position and vector of front detector hit.
 - x-y hit pixel number on two or more layers.
- 55 μ m initial pixel size
- 20 cm initial layer separation
- Increased pixel size by using floor(pixX/N)

Native DD4Hep pixelization

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Energy Resolution - Tagger 2 - 18GeV

Energy Resolution - Tagger 2 - 18GeV

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへ(で)

Energy Resolution - Tagger 2 - 18GeV

55 μ m pixels using different combination of tagger layers.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

logQ² Resolution - Tagger 2 - 18GeV

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

logQ² Resolution - Tagger 2 - 18GeV

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Phi Resolution - Tagger 2 - 18GeV

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Phi Resolution - Tagger 2 - 18GeV

Cut $Q^2 > 4$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Phi Resolution - Tagger 2 - 18GeV

Cut $Q^2 > -4$

55um pix Phi Reconstruction

220um pix Phi Reconstructio

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─

440um pix Phi Reconstruction

880um pix Phi Reconstruction

1760um nix Phi Reconstructio

Reconstruction Improvements

- Need to be careful of initial kinematics.
- Training on small dataset (100k hits) with quick/relaxed convergence requirements.
- Prior position and vector reconstruction may help at least guide the network.

▶ Tinker with network structure and parameters.

Outline

Simulation Layout Acceptance Studies Resolution Studies Timepix4 Pitch Allpix²

Timepix4 ASIC

- Brand new but existing ASIC already exceeds criteria of our tracking detectors.
- ▶ 55 μ m pixel pitch.
- Would increases rate capabilities and/or allow for smaller stations closer to the IP.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Future within EIC timescales
 - Coupled to Inverse LGAD for finer timing
 - Generation beyond Timepix 4 planned.

Timepix4 ASIC

Timepix3 → Timepix4

Timepix4: A 4-side tillable large single threshold particle detector chip with improved energy and time resolution and with high-rate imaging capabilities

			Timepix3 (2013)	Timepix4 (2019)	
Technology			130nm – 8 metal	65nm – 10 metal	
Pixel Size			55 x 55 μm	55 x 55 μm	
Pixel arrangement			3-side buttable 256 x 256	4-side buttable 512 x 448 3.5x	
Sensitive area			1.98 cm ²	6.94 cm ²	J
Readout Modes	Data driven (Tracking)	Mode	TOT and TOA		
		Event Packet	48-bit	64-bit 33%	
		Max rate	0.43x10 ⁶ hits/mm ² /s	3.58x10 ⁶ hits/mm ² /s	1
		Max Pix rate	1.3 KHz/pixel	10.8 KHz/pixel	J
	Frame based (Imaging)	Mode	PC (10-bit) and iTOT (14-bit)	CRW: PC (8 or 16-bit)	
		Frame	Zero-suppressed (with pixel addr)	Full Frame (without pixel addr)	
		Max count rate	~0.82 x 10 ⁹ hits/mm²/s	~5 x 10 ⁹ hits/mm²/s 6x]
TOT energy resolution			< 2KeV	< 1Kev 2x]
Time resolution			1.56ns	195.3125ps 8x	
Readout bandwidth			≤5.12Gb (8x SLVS@640 Mbps)	≤163.84 Gbps (16x @10.24 Gbps)	3
Target global minimum threshold			<500 e	<500 e	

xavier.llopart@cern.ch

CERN Detector Seminar 11th February 2022

9

CERN Detector Seminar last Friday "Applications of Timepix technology for Beam Instrumentation at CERN" Indico Link

Demonstration of Timepix3 for beam profile monitoring in the vacuum.

Key point - Detector and readout from beam vacuum with cooling.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Timepix4 ASIC

LGAD sensor bonding

Sub 100 ps timing Aimed towards LHCb VELO upgrade.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Moffat (2020) PhD thesis

Outline

Simulation Layout Acceptance Studies Resolution Studies Timepix4 Pitch Allpix² Allpix²

- Framework for simulating the performance of silicon detectors.
- Propagation of charge carriers.
- Signal digitisation and readout.
- Remove background early via cluster classification in hardware.

(日) (四) (日) (日) (日)

Allpix²

14 GeV e^- on 300um silicon sensor

<ロト <回ト < 回ト

э

 Allpix^2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Backup

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Spectroscopy Acceptance X - 5GeV

Spectroscopy Acceptance Y - 5GeV

Raw training correlations

▲□▶▲圖▶▲圖▶▲圖▶ = ● のQで