Tracking for taggers

Jaroslav Adam

BNL

May 12, 2022

Far-backward meeting

Jaros	lav Ad	lam (BNL	١

Introduction

- Mechanism for cluster finding and track fit for tagger detectors will be shown here
- Series of steps connect detector signals to the original scattered electrons:
 - 1. Hits as fired pixels in tracking planes
 - 2. Clusters are formed out of hits in the planes
 - 3. Detector tracks are found from the clusters
 - 4. Scattered electrons are reconstructed from detector tracks
- Item (4), and briefly (1) was discussed last time: indico.bnl.gov/event/15498/
- Tracks for electron reconstruction were obtained with help of truth MC as points in counting planes belonging to the electron
- Realistic implementation for tracking and clustering will be shown here for items (2) and (3)
- Simulation of 5M events of quasi-real photoproduction was used to obtain the results

Geometry layout to test the tracking

- 4 planes for each tagger ordered in increasing z, convenient for the used fit procedure
- The planes are perpendicular to the beam as an approximation to detector at an angle
- Plane spacing along *z* is 30 cm
- Each plane is made of Si, 50 μm thick
- Segmentation is done to pixels of 200×200 μm²
- Output is deposited energy in each pixel (hit)
- The hit is primary if primary electron makes a step in the pixel

Cluster finder

- Energy deposition caused by a single electron is shared by neighboring pixels in general
- Adjacent pixels (hits) with energy deposition are grouped to form clusters in a series of steps:
 - 1. Threshold of 0.4 keV is applied to each hit
 - 2. Seed for cluster is found as a hit with the highest energy deposition
 - 3. All hits neighboring the seed are found
 - 4. Cluster is formed by the seed hit and its neighboring hits
 - 5. All hits in the cluster are removed from the finder
 - 6. Next seed is found from the remaining hits and the process repeats
- The steps to find clusters are performed for each detector plane separately
- Position of the cluster is obtained as energy-weighted average in x and y along the detector plane
- Energy of the cluster is a sum of energies in hits in the cluster

Number of hits in clusters

- Example on number of hits forming a cluster is shown for plane 1 in tagger 1, works similar for the rest
- The cluster is associated with primary electron if all its hits correspond to primary electron
- Background (non-primary) hits and clusters are caused by scattering in magnets material
- Clusters by primary electrons are more localized, 1 or 2 hits only

Cluster energy

- Energy of cluster is a sum of energies in hits in the cluster
- Shown for plane 4 in both taggers, works similar for the rest

Cluster size

- Cluster size is taken as uncertainty in energy-weighted average used in cluster position
- The radius combines uncertainty in *x* and *y* as $\sqrt{\sigma_x^2 + \sigma_y^2}$
- Shown in relation to number of hits in cluster for plane 1 in tagger 2, works similar for the rest

Detector frame for track fit

- Points for the track are given by clusters in each detector plane
- Detector planes 1 4 are spaced by distance *L*, pixel size in each is *d*
- The planes are aligned and centered along *z* (drawing on the right)
- Track is given by slope angle θ_x, θ_y and intercept position x₀, y₀:

 $\begin{aligned} x &= x_0 + z \times \tan \theta_x \\ y &= y_0 + z \times \tan \theta_y \end{aligned}$

 In the detector frame it is possible to obtain analytic formula for the slope and intercept

Figure: Detector frame centered in the middle of the planes

Track fit by a straight line

- Points measured by planes are x₁, x₂, x₃ and x₄ in x and similar y₁₋₄ in y
- In Nucl.Instrum.Meth. 203 (1982) 291-297 it is shown for track slope and intercept:

$$x_0 = \frac{1}{4} (x_1 + x_2 + x_3 + x_4)$$
$$\tan \theta_x = \frac{1}{10L} (-3x_1 - x_2 + x_3 + 3x_4)$$

- Similar formula hold for y_0 and $\tan \theta_y$ out of y_{1-4}
- The fit has 2 degrees of freedom in x and y (4 points for 2 track parameters)
- It would work for 3 planes but the middle plane would not contribute to the slope

Track as a straight line:

 $x = x_0 + z \times \tan \theta_x$ $y = y_0 + z \times \tan \theta_y$

Tracks χ^2

- Set of points x_{1-4}, y_{1-4} has to satisfy $\chi^2_{x,y}$ /ndf < 4 to form the track
- Example is shown for tagger 1, works same for tagger 2
- The track is primary if all its clusters are primary
- All primary tracks have $\chi^2_{x,y}/ndf < 1$

Figure: All tracks

Figure: Primary electrons

Number of tracks per event

Figure: Tagger 2

 In almost all cases the simulated electron is identified as a single primary track

Track position

Tracks horizontal angle

- Track horizontal slope θ_x in detector frame is shown for both taggers
- Large angles belong only to background clusters

Figure: θ_x , tagger 1

Figure: θ_x , tagger 2

Tracks vertical angle θ_y

- Track vertical slope θ_y in detector frame is shown for both taggers
- Large angles belong only to background clusters

Figure: θ_y , tagger 2

Origin of peak in horizontal angles θ_x in tagger 1

- The peak in θ_x is caused by kinematics peak in cross section
- Potential for data-driven alignment

Jaroslav Adam (BNL)

- One photoproduction electron per event was simulated and corresponding detector track was found
- Next step is to simulate a bunch crossing with pileup of bremsstrahlung electrons
- A photoproduction electron has to be embedded in the bunch crossing
- The task is to separate all tracks in the bunch crossing and identify the photoproduction by Q^2
- Backup gives full account on tracking and clustering codes

Backup

Codes for MAPS, clustering and tracking

 MAPS tracking layer: github.com/adamjaro/Imon/blob/master/src/TrkMapsBasic.cxx github.com/adamjaro/Imon/blob/master/include/TrkMapsBasic.h github.com/adamjaro/Imon/blob/master/src/TrkMapsBasicHits.cxx github.com/adamjaro/Imon/blob/master/include/TrkMapsBasicHits.h

• Cluster finder:

github.com/adamjaro/Imon/blob/master/roman_pots/src/TagMapsBasicPlane.cxx github.com/adamjaro/Imon/blob/master/roman_pots/include/TagMapsBasicPlane.h

- Tracking: github.com/adamjaro/Imon/blob/master/roman_pots/src/TagMapsBasic.cxx github.com/adamjaro/Imon/blob/master/roman_pots/include/TagMapsBasic.h
- Analysis over simulated data, run macro and example configuration: github.com/adamjaro/Imon/blob/master/analysis_tasks/src/AnaMapsBasic.cxx github.com/adamjaro/Imon/blob/master/analysis_tasks/include/AnaMapsBasic.h github.com/adamjaro/Imon/blob/master/analysis_tasks/run_macros/run_AnaMapsBasic.py github.com/adamjaro/Imon/blob/master/analysis_tasks/ini/AnaMapsBasic.ini