Zero Degree Calorimeter (ZDC)

Calorimeter to measure photons and neutrons. ZDC sits at ~38m from interaction point.

Shima Shimizu (RIKEN/JSPS) for the eRD27 collaboration

EIC IR Integration and Auxiliary Far-Forward/Far-Backward Detectors Technical Design Review (27/Apr/2022)

Physics case for the ZDC

<u>Neutron-tagging e+d DIS</u>

From comparison to e+p DIS, access to nucleon structure in the deuteron

- \rightarrow Reduction of uncertainties in use of e+d data in proton PDF determination.
- Vector Meson production in e+A

Veto incoherent events by tagging photons and/or neutrons.

- → Sensitivity to gluon saturation
- Meson structure (Sullivan Process)

Measure neutron or Λ ($\rightarrow n+2\gamma$) in far-forward

 \rightarrow Structure of π , K, etc.

and diffraction, leading neutrons measurements...

Performance requirements

- Large acceptance: 60 cm x 60 cm
- Measurement of GeV photons and neutrons

Detection of soft photons, with detection efficiency > 90%

	Energy range	Energy resolution	Position resolution
Neutron	\sim 275 GeV (up to beam energy)	$\frac{50\%}{\sqrt{E}} + 5\%$	$\frac{3 \text{ mrad}}{\sqrt{E}}$
Photon	0(100) MeV	20~30%	
	20~40 GeV	$\frac{35\%}{\sqrt{E}}$	0.5~1 mm

→ Huge energy range requires very detailed reconstruction of photon and neutron showers.

YR Fig. 8.104

Design concept: Full shower reconstruction

Current ZDC design

*note: space for readout may extend the longitudinal length.

Simulated performance meets requirements

Geant4 simulation uses energy deposits, not the scintillated photons.

Some of service/readout materials are not in the simulation.

300

250

Readout based on ALICE FoCal

	N. of ch. per unit	total N. of ch.	Readout technology in consideration
Crystal	400	400	APD, if it has sufficient radiation hardness.
Silicon pad	3600 / layer	115200	HGCROC, as in the ALICE FoCal-E pad layers.
Silicon pixel	40000 / layer	160000	Need discussion. \rightarrow slide 9
Scintillator	36 / box	72	APD (15 layers are read together. by Shashlik?)

ALICE FoCal EM section

ALICE-PUB-2020-005 https://cds.cern.ch/record/2696471

A readout board is inserted right after each silicon layer.

Prototype of an ALICE FoCal-E pad segment <u>NIM A 988 (2021) 164796</u>

Major open points

• Which crystal?

	light yield	cost	note
PbWO ₄	low	less expensive	
LYSO	high (>100 x PbWO ₄)	high	good timing resolution
SciGlass	better than PbWO ₄	not high	still in development

Readout of silicon pixel?

- Finer version of silicon pad?
- ALICE FoCal high-granularity readout?

AC-LGAD?

- Timing information for particle ID/energy measurement.
- Photon detectors for crystals?

Radiation load

• First radiation estimate:

Operation for 1/3 of a year $\rightarrow 8 \times 10^{12} n_{eq}/cm^2$

(work by V. Baturin)

Neutron MEQ fluence from ep (10GeV x 275GeV)

- Irradiation tests at RIKEN.
 - In March 2022, in collaboration with FoCal
 - Max. 10^{14} neutrons/cm² in 2 days.
 - Silicon chips and APDs are irradiated.
 - More tests in future

 ZDC is designed to measure O(100) MeV photons, GeV photons, and neutrons up to the beam energy.

 Currently designed as a complex of a crystal calorimeter and 3 types of sampling calorimeters.

• Details of the design will be further optimized/updated.

Backup

Current ZDC design

*note: space for readout may extend the longitudinal length.

Cost estimation

- In ECCE proposal:
 \$7M (All in-kind cost)
- Estimation for detector itself (materials + readout) in EIC-Japan:
 \$ 5.4M
 - Crystal cal. \$0.9M
 - W/Si cal. \$2.7M
 - Pb/Si cal. \$1.1M
 - Pb/Sci cal. \$ 0.6M

PbWO₄ \$385K, Crystal readout \$251K Si-pad \$56K/layer, Si-pad readout \$22K/layer Si-pixel \$56K/layer, Si-pixel readout \$247K/layer W plates \$12.5K/layer, Pb plates \$12.5K/layer Pb+Scintillator \$110K x 2, Pb+Scintillator readout \$200K x 2

Comparison of materials

	Material	NaI(Tl)	CsI(Tl)	CsI	BaF ₂	CeF ₃	BGO	$PbWO_4$	LSO(Ce)	SciGlass
[Density (g/cm^3)	3.67	4.51	4.51	4.89	6.16	7.13	8.3	7.4	3.7-5.4
	Melting Point (°C)	651	621	621	1280	1460	1050	1123	2050	1200-1300*
	Radiation Length (cm)	2.59	1.86	1.86	2.03	1.70	1.12	0.89	1.14	2.2-2.8
	Moliere Radius (cm)	4.13	3.57	3.57	3.10	2.41	2.23	2.00	2.07	2-3
	Interaction Length (cm)	42.9	39.3	39.3	30.7	23.2	22.7	20.7	20.9	40
	Refractive index ^a	1.85	1.79	1.95	1.50	1.62	2.15	2.20	1.82	2
	Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No	No
	Luminescence ^b (nm)	410	560	420	300	340	480	425	420	440
	(at Peak)			310	220	300		425		460
	Decay Time ^b (ns)	245	1220	30	650	30	300	30	40	450 (40)
				6	0.9			10		10-20
	Light Yield (γ/MeV)	41k	60k	1.3k	16k	2.8k	8k	240	35k	(0.5-2)k
	$d(LY)/dT^{b,c}(\%/^{\circ}C)$	-0.2	0.4	-0.6	-1.9	0	-0.9	-2.5	-0.2	0
	Radiation Hardness	1-2	1	10	1	> 50	> 1000	> 1000	> 1000	> 1000
(krad) recovery				recovery						
	Experiment	Crystal	CLEO	KTeV	TAPS	-	L3	CMS	SuperB	
l		Ball	BaBar				BELLE	ALICE	KLOE	
l			BELLE					PrimEx		
l			BESIII					PANDA		
								HPS		
								NPS		

Photon energy reconstruction

