Far-backward update

Jaroslav Adam

BNL

May 13, 2022

Detector 1 General Meeting

EIC IR Integration and Auxiliary Design Review

- Far-backward denotes instrumentation in electron outgoing direction
- Involves luminosity measurement
- Taggers 1 and 2 detect electrons scattered at very small angles

Luminosity detector (Bill Schmidke)

- Process of elastic bremsstrahlung, $ep \rightarrow e\gamma p$, $eAu \rightarrow e\gamma Au$
- Large cross section peaked for photons at small angles
- Two methods for γ detection: direct detector and e^{\pm} spectrometer:

Figure: Cross section

Figure: Angular distribution

Direct photon detector and pair spectrometer (Bill Schmidke)

Simple concept, approximate measurement

Figure: Direct photon detector

- More γ incident in every bunch crossing
- Online machine performance

Precise measurement for physics results

Figure: Pair spectrometer

- More complex implementation
- Not sensitive to synchrotron radiation

Vacuum system (Bill Schmidke)

- Conversion layer is part of beam layout
- Need for precise knowledge of conversion probability
- Heat load from synchrotron radiation is incident on the layer
- Several considerations for the design:

I: baseline design, converter holds the vacuum

Low Q^2 detector (JA)

- Two detectors along the outgoing electron beam
- Same *Q*² is reached at different energies and angles:

Figure: Q^2 vs. energy and scattering angle

Figure: Towards central detector

Figure: Towards the tunnel

Jaroslav Adam (BNL)

Performance of low Q^2 detector (JA)

- Production rates are dominated by large bremsstrahlung cross section
- The rates give normalization to spectrum of reconstructed Q²
- Clean photoproduction signal can be taken over a limited region in Q²
- Bremsstrahlung electron are important to calibrate the luminosity measurement

Figure: Cross section

do dE_ (mb/GeV) Bremsstrahlung Quasi-real photoproduction 10 Pythia6 10 10 10 10 10 16 18 20 10 12 14 22 Electron energy E. (GeV)

Figure: Observed spectrum

Reconstruction in low Q^2 detector (JA)

- Reconstructed virtuality Q² is compared to generated true event Q²
- Machine learning connects detected track with original scattered electron
- The *Q*² is given by electron energy and scattering angle
- Beam effects (vertex spread, angular divergence) are included in the simulation
- Beam angular divergence limits the resolution at $Q^2 < 10^{-3} \text{ GeV}^2$

Group update

- Session on low *Q*² at the last group meeting
- indico.bnl.gov/event/15744/

Far Backward weekly meeting

Thursday 12 May 2022, 10:00 → 11:00 US/Eastern

Description Zoom link

https://york-ac-uk.zoom.us/j/99624170138?pwd#a2NOUFN5YkVPcG9aaVNGYVIDd2dmUT09

Meeting ID: 996 2417 0138 Passcode: 498133

DD4hep implementation (Simon Gardner)

- Counting layers T0-3 for acceptance in electrons and meson spectroscopy
- Pixel layers for reconstruction (right plot)

Reconstruction with TMVA (Simon Gardner)

• Machine learning approach using simple ROOT TMVA (DNN) neural network

Exclusive lepton pairs (Krzysztof Piotrzkowski)

- GRAPE generator, arXiv:hep-ph/0012029
- All lepton pairs, e^{\pm} , μ^{\pm} and τ^{\pm} will be feasible
- Scattered proton is detected in far forward, θ_{p} < 6 mrad
- Far backward taggers detect scattered electron, $\pi \theta_e < 10 \text{ mrad}$
- Sensitivity to proton charge radius with μ^{\pm} pairs
- Opportunity for data-driven calibrations with two-photon exclusive process

Pairs of μ^{\pm} (Krzysztof Piotrzkowski)

- The μ^{\pm} are detected in central detector
- All constraints for scattered proton and electron are applied
- Cross section at the top energy is $\mathcal{O}(100)$ pb

Tracking for low Q^2 taggers (JA)

- Realistic clustering and tracking algorithm
- Flag for tracks by primary electrons
- Track as a straight line:
 - $\begin{aligned} \mathbf{x} &= \mathbf{x}_0 + \mathbf{z} \times \tan \theta_{\mathbf{x}} \\ \mathbf{y} &= \mathbf{y}_0 + \mathbf{z} \times \tan \theta_{\mathbf{y}} \end{aligned}$
- Fit is performed by a set of analytic formula

Figure: Si pixel planes

Tracking performance (JA)

- Track parameters are shown for tagger 1
- More narrow angles for tracks by primary electrons

Figure: Fit quality

Figure: Track position

Figure: Vertical angle

Jaroslav Adam (BNL)

0 25 50 75 100

A. (mrad)

Tagger 1

All tracks

Primary electrony

Summary

- Talks at the IR review were well accepted, no concerns were raised
- Ongoing effort on comparing luminosity implementation from ECCE and ATHENA perspective
- Exit window as a conversion layer is a common project with the machine group
- Tracking in tagger detectors is to be coupled to the two machine learning tools for electron reconstruction
- Simulation of a real bunch crossing will include pileup from bremsstrahlung along with photoproduction electron
- More constrains by beam layout are likely to arrive for size of tagger detectors