Autonomous Materials
Discovery using X-rays
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Synchrotron Data () Brookhaven

e Synchrotron (electron accelerator)
generates x-ray beams for material
study

e Beamlines generate large amounts
of data

e Much of it is never analyzed

e Complex data analysis consumes
scientists’ precious time, distracting
from deep scientific questions

e Leverage machine learning to
automate experimental workflows?
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Vision: Autonomous Experiments (& E‘;;Enﬂahbbfr‘;gg
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User raw data X
PaSt Instrument Automated
Agency Automated >‘ AnaaiyZis
= User manually loads samples, tweaks motors,
collects data, rushes onto next sample... solet
= Human’s time is wasted \ J
Future @ Eﬁ%
. . . . Output summary |=og—p o8 . Wﬁﬁ%
= Automate the entire experiment, including ) of dateyurends, | < o3 | |u bEEah
decision-making |

= Liberate human scientist to focus on scientific
insight
= Accelerate materials discovery

Manual naive mapping Exhaustive mapping Intelligent exploration

Scientific
Discovery

5 5 S

i provfl E— CIIIIIIIiae- Pl o e 1 Te S O¥tne.,

'LTO-) o o o) + high- 'g o o o O\\‘ 'g o [e) Oa

g throughput” 3| o o o o i} o o ©O ©°R

£ o o o Elo o o o/ 5 0.2

) ] o

- ©8 0 °

Temperature Temperature Temperature



The goal in x-ray scattering is to determine

the structure of a material
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X-ray Detector Images ) Brookhaven

e Goalis to recognize the significance of an image (as a human does)
e |s experiment working?
e What features are in the image?
e What's the sample’s structure?
e We define an ambitious multi-classification problem (>100 tags)
e Instrumental aspects (e.g. experiment type)
e Image features (rings, peaks, symmetry, etc.)
e Material detection (metal, polymer, etc.)
e Holistic information (“sample is well-ordered”, “material is aligned”, etc.)
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fatigued-C_black_th000_spot3_120sec_WAXS

Rubrene_BN_th012_spot1_30sec_WAXS

disordered some ordering oriented, textured single crystal
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X-ray Scattering @) Brookhaven

= Use deep learning (convolutional neural networks) for SAXS/WAXS detector images

CNN
|::> Classifier |::> Prediction

Feature Vector

/

= Synthetic data for training (mitigates sparsity and imbalance of tagged experimental data)

= Can automatically categorize images, identify scattering features or specific materials

Ring Halo Diffuse low-q
Isotropic Anisotropic Isotropic Anisotropic Isotropic Anisotropic

= Accuracy depends on class

Wang et al. NYSDS 2016
Wang et al. WACV 2017, 1, 697



L;} Brookhaven

Multi-channel Learning

e Use multiple representations of the data as channels
e We can select representations that are particular well-suited to the scientific dataset

National Laboratory

e “Physics-aware” deep learning

CNN

> | Classifier > Prediction

Feature Vector
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Fourier-Bessel Transform @) Brookhaven

National Laboratory

= Fourier-Bessel decomposition is devised to “lock-in” on features that matter in scattering
= Peaks
= Symmetry

= Generates a matrix of terms (encoding important features)

: - Radial frequencies
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= Sparse matrix can be used as a “compressed representation,” which can be used for image
healing and to improve classification
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Fourier-Bessel Transform @) Brookhaven

= Compressed representation also useful for classification

= Fourier-Bessel decomposition designed to “lock-in” on features that matter in scattering
= Peaks
= Symmetry

11

. . : I
| Elastlc Net | 1 - Diffuse low-0: Isotropic
I AP N Feature Fouter I
: Optimization Image CNN | - | | | |lm ”' vector - AgBH :
: f(I) | I l - Diffuse low-g: Oriented XY |
' IR e |
I I | : SVM - Sf&cu\ar rod ) |
I — e o
: r - | | — : : " Classification |

- Radial f ° - Ring: Oriented XY
A0 P ' TR | e !
I o (b X 5e) (34 x = COEf. CNN | . L _PaHT |
I O0O® £ g(A,) — L | X New Attribute Prediction I
I . z & 1 - Difuse higf-: Orienied XY -Aing: Isotropic I
I ) ] CETE Wl Ll jE?;ﬁ’t%’c'ﬁgﬁﬁﬂn’f] ~Difs owe: Aisoopi |
HH = Amorphous - Ordered
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Fourier-Bessel Estimate Double-View Convolution Transfer Learning

mAP Diff. lo-.q  Diff. hi-q Halo Higher Ord. Rings Sym. halo  Sym. rings  2-fold sym.  4-fold sym.  6-fold sym.

Positive Ratio - 0.1366 0.0840 0.2226 0.5776 0.5978 0.1440 0.1192 0.2422 0.1176 0.0838
Image CNN  0.6424 0.8945 0.8012 0.8839 0.9580 0.9568 0.5778 0.4873 0.4238 0.2199 0.2208
Coef. CNN  0.7450 0.8486 0.7044 0.8502 0.9451 0.9506 0.7165 0.5099 0.6915 0.5718 0.6612

Joint  0.7779 0.9087 0.8178 0.9014 0.9604 0.9626 0.7494 0.5385 0.6821 0.5964 0.6621

Guan et al. BMVC 2018, 0828, 1



Autonomous Experiments

Automate entire experiment

Data analysis
= Decision-making

Improves efficiency

More optimal than naive methods

Can define target (exploration, target,
consider cost, find novelty)

Al/ML methods yield surrogate
model, uncertainty

Liberates humans to focus on science

Accelerated material discovery

Manual naive mapping Exhaustive mapping
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Noack et al. Scientific Reports 2019, 9, 11809
Noack et al. Scientific Reports 2020, 10, 1325
Noack et al. Scientific Reports 2020, 10, 17663
Noack et al. Nature Reviews Physics 2021, 3, 685

Sample handling, align, data acquisition

Composition
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Intelligent exploration
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Algorithm: Gaussian Process S e

Brookhaven

= Construct surrogate model
= Fit/interpolate data
= Select kernel to match physics

= Estimate hyper-parameters that match
data (lengthscales, periodicity, etc.)

= Calculate uncertainty surface

= Construct objective function
= Search for maximum in objective

= Optimization problem (genetic
algorithm, differential evolution,
deflation)

= Control behavior: gradients, cost, etc.

= As we iterate, errors decrease (can terminate
at desired error) and surrogate model
improves

Noack et al. Scientific Reports 2019, 9, 11809
Noack et al. Scientific Reports 2020, 10, 1325
Noack et al. Scientific Reports 2020, 10, 17663
Noack et al. Nature Reviews Physics 2021, 3, 685
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Autonomous X-ray Scattering

National Laboratory

Local orientation (°) , Local anisotropy

-0.5 0.0

x (mm) N z (mm)

= Mapping
= Coarse-to-fine imaging
= Scale of heterogeneity not known a priori

y (mm)

125

= Combinatorial sample arrays
= Explore physical parameter space
= Spaces may be complex, high-dimensional

)

-
[S)
o

7.5

5.0

linewidth (nm
duty cycle (%)

2.5

0.0—x5 100 50 100

N=597 dp (nm)

O ]

= Real-time processing
= Control material ordering in real-time

=  Discover transient states and non-
equilibrium process histories

t (minutes)

Kevin Yager (CFN), Masa Fukuto (NSLS-II)
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Polymer 3D Printing ) Brookhaven

Materials science

= Polymer additive manufacturing depends critically on the welds between layers

Scattering intensity (a.u.) Crystal grain size (nm)
p(a.u.) ¢ (nm)

20

POM image

0.1 02 0.3 0.1 02 03
x (mm) x (mm)

Experiment
N=3,337 pla.w)

= X-ray scattering mapping of polymer
crystallization

6e+03

4.75e+03

= |dentified surface ordering (after just
~40 measurements)

3.5e+03

= Measure dependence on process
parameters

Yeorrected (mm)

2.25e+03

le+03

20 30 40 50
Collaboration: Jon Seppala, Tyler Martin (NIST) Vprint (mm/5)
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Polymer 3D Printing ) Brookhaven

Model/kernel design matters

= Autonomous decisions (optimal exploration)
= Final reconstruction (insight)

N=41 N=213 _N=2333/

data
points

linear
interpolation

GP
+anisotropic

GP
+anisotropic
+periodic

Collaboration: Jon Seppala, Tyler Martin (NIST)
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Block Copolymers & oarhaven

Structured Polymer Chains

= Spontaneously organize into nanoscale patterns

W e

I hexagonal
. lamellae
cylinders

o O—

Responsive Materials

= Clever control of processing history can drive
material into an exotic “non-native” state
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Directed Self-Assembly (@) EiETkiatEn

Materials science

= Chemical grating controls ordering of block copolymer blends
p(a.u.) _N=2263 N =3286

3e-05

2e-05

le-05
‘ [

0

Increasing
grating pitch

Increasing
width of
chemical

stripes

Demonstrates
= AE can find small patches of “unexpected” behavior; algorithm can seek “novelty”
* Enabled refinement of processing parameters



National Laboratory

Brookhaven
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Directed Self-Assembly
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A. Stein, G. Doerk



L;} Brookhaven
) National Laboratory
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Block Copolymer Layering

National Laboratory

L;; Brookhaven

Materials science

= Layering self-assembling materials can
generate new (non-equilibrium) structures

= Enormous search space: material selection,
layering sequence, annealing time, etc.

Experiment
* Find rare, interesting transient states
= gpCAM explores 2D combinatorial gradients

= gpCAM selects next slice to make and
measure

Sebastian Russell, Suwon Bae

self-assembling

thin film anneal conventional
—D morphology
layering of self-
assemb:ing
materials A
% 7 non-equilibrium
~ structure

N=1,249 p(a.u.)

0.007

0.006

0.005

0.004

0.003

0.002




ordered material p (a.u.)

total selected

parameters: 212 ditE

signals: 1,023,183% 4
points: oo 226,299

first layer
pre-annealing
time



Real-time Annealing of BCPs

Materials processing

= Block copolymer ordering depends on temperature and time

= Photo-thermal annealer allows thin film heating to be controlled
= Fast and local heating, large gradients, realtime control

= Establish a thermal gradient, and measure changes over time

=1
N=597 dy (nm) %/
x.\w\,‘awwm“ AR v&un&(\t;/ ‘.r‘wswwvw*w‘*égldr v%w ?v_‘;’é/ e — 40

350 % > o

200 : 300

t (minutes)

Demonstrates
= Exploration of material during ordering

Collaboration: P. Majewski (U. Warsaw)
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Future: Decision Methods @) Erookhaven

National Laboratory

= Gaussian process

= (Can be easily applied to any space; no pre-training
required

o(p)

= Easy to tweak to suit experimental needs (target, cost,
etc.)

= Directly yields model uncertainty and termination criterion
= Future: physics priors for guidance and hypothesis testing

= Reinforcement learning

) Choose Environment
Train

= Deep learning encodes “policy” for what action to take  KE& scvonor IRy
H i Rand imulation
from a given state (Poiicy) Action e
H H : : Com Ob: d S ~
" Need traln!ng da.ta (can pre-train on simulations) e et ?0,?\
= Collaboration with ExalLearn, CSI. Compute Reward

Alexander et al. Inter. J. H.P.C. App. 2021, 598
= Bayesian model averaging

= Assume dynamics are part of a known class of models
(plus a discrepancy term)

= Real-time control guides towards target; data constricts
distribution of likely models

= As knowledge of dynamics improves, real-time control
improves

= Collaboration with Kris Reyes (U. Buffalo, CSl)
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Future of AE 0 BT e

. equilibrium transient
PhySICS-aware m(;qrphologles structures
disordered |
= Control/constrain surrogate, kernel, cost, etc. R e \-
: : : o B e
=  “Prior” from simulations ST S \\~
+ order
- . {E well-ordered
Realtime processing gé ot ft'},’,;‘{,: = “
= Photo-thermal platform for complex annealing @ | other! i
. . struct re
histories (block copolymers) s .
trappe
= Liquid handling for real-time synthesis ] -
= Requires fast surrogates, real-time controllers?
compute correlations compute correlations

structural
measurement

robotic real- t|me

synthesis

X-ray
cattering

A

"inner" loops

Autonomous

coordinate experiments

Multi-modal

= Balance tradeoffs in generality/specificity and rigor/speed
= Search for correlations across modules, experiments, etc.
= Transfer learning? Federated learning?
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Future of Facility Science @) Erookhaven

National Laboratory

= Advanced computing and Al/ML
=  Autonomous experiments liberate scientists
= Aggregated and open databases
= Remote analytics and instrument control
= Transition from a set of disconnected tools, m - d'tt‘/
into an Al/ML software-accessible discovery ecosystem '“e“”“""e"t
= CFN strategic theme: Accelerated Nanomaterial Discovery automated Q:J

data acquisition

= BNL initiative: Human-Al-facility integration decison-making
= DOE: Al/ML for facilities

detector
image

!

automated
data analysis

general users experts

00000 OO
Agents E‘Eﬂ E@] ‘gﬂ

Al/ML agents workflow code

smooth user
interfaces
(login, Iaunch
etc

Al-enabled

Software | AcquisitionFe»| Analysis & | Simulation/}]

reduce
dev. friction
(documentation,
repositories, etc.)

local HPC registries §ata arcéive

Instruments Compute Storage

|ntegrated
& high-
performance

Infrastructure




Summary L:»,“ Brookhaven

National Laboratory

« Data Analytics
« ML powerful for scientific data (“understands” X-ray scattering)
* Integrate domain expertise

« Autonomous experiments can explore parameter spaces
* |ncreases beamtime utilization

Human experimenters
250

* More efficient exploration
« GP directly yields model and
I £ . i A =
uncertalnty Eh- ri 15 Sat 16 Sun 1\7J? 18LT 19 w,:zoﬁ

day
Autonomous experiments

50 A I /\ |
04 / - "\‘-— - -
Tue26  Wed27  Thu28 Fri 0 Sat 02 Sun 03 Mon 04
 Outlook E
utioo

* Apply to even more challenging materials problems
* Physics-informed
« Realtime processing/synthesis
« Multi-modal




<, .
Acknowledgments C Brookhaven

e Machine vision e Autonomous implementation e Electrospray (Yale, U.Penn)
e Tamara Berg (UNC Chapel Hill) e Masa Fukuto (BNL, NSLS-II) e Chinedum Osuji
e Alex Berg (UNC Chapel Hill) ¢ Marcus Noack (CAMERA) e Kristof Toth
e Hadi Kiapour (UNC Chapel Hill) ¢ Jamie Sethian (CAMERA) e Photo-thermal annealing (U. Warsaw)
e Deep learning ¢ Ruipeng Li (BNL, NSLS-II) e Pawel Majewski
e Dantong Yu (BNL, CSI) e Esther Tsai (BNL, CFN) ¢ Andrzej Sitkiewicz
e Minh Hoai Nguyen (Stony Brook) ¢ Arkadiusz Leniart
e Boyu Wang (Stony Brook) e Beamlines (BNL, NSLS-II) e Polymer composites (Columbia)
e Hong Qin (Stony Brook) e Mikhail Zhernenkov e Sanat Kumar
e Zigiao Guan (Stony Brook) ¢ Guillaume Freychet e Andrew Jimenez
e Data analysis e Lutz Wiegart ¢ Alejandro Krauskopf
e Jiliang Liu (BNL, CFN) ¢ Sanjit Ghose ¢ Nanoparticle superlattices (U. Penn)
e Julien Lhermitte (BNL, CFN) e Dan Olds e Chris Murray
e Youngwoo Choo (Yale) ¢ Phillip Maffettone e Katherine Elbert
e Visualization ¢ Joshua Lynch ¢ Nanorod assembly (AFRL) non)
e Wei Xu (BNL, CSl) ¢ Tom Caswell ¢ Richard Vaia &Penn
e Klaus Mueller (Stony Brook) e Jason Streit YaleUniVﬁfSitY
¢ Directed assembly (BNL, CFN) e 3D printing (NIST) k
e Greg Doerk ¢ Jon Seppala AFRL
@ e Aaron Stein ¢ Tyler Martin ler
meath ¢ Sebastian Russell e Metal dealloying (SBU) X

#*UNIVERSITY
=OF WARSAW

q\\\w Stony Brook

University

U.S. DEPARTMENT OF Office of e Suwon Bae e Karen Chen-Wiegart

ENERGY science * Chonghang Zhao

BROOKHIAVAEN Center for Functional National Synchrotron | Computational
NATIONAL LABORATORY | Nanomaterials Light Source I Science Initiative GLD COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK



