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• Synchrotron (electron accelerator) 
generates x-ray beams for material 
study

• Beamlines generate large amounts 
of data

• Much of it is never analyzed

• Complex data analysis consumes 
scientists’ precious time, distracting 
from deep scientific questions

• Leverage machine learning to 
automate experimental workflows?

Synchrotron Data



Past

▪ User manually loads samples, tweaks motors, 

collects data, rushes onto next sample…

▪ Human’s time is wasted

Future

▪ Automate the entire experiment, including 

decision-making

▪ Liberate human scientist to focus on scientific 

insight

▪ Accelerate materials discovery

Vision: Autonomous Experiments



• The goal in x-ray scattering is to determine
the structure of a material

X-ray Scattering



• Goal is to recognize the significance of an image (as a human does)

• Is experiment working?

• What features are in the image?

• What’s the sample’s structure?

• We define an ambitious multi-classification problem (>100 tags)

• Instrumental aspects (e.g. experiment type)

• Image features (rings, peaks, symmetry, etc.)

• Material detection (metal, polymer, etc.)

• Holistic information (“sample is well-ordered”, “material is aligned”, etc.)

disordered some ordering oriented, textured single crystal

less order more order

X-ray Detector Images



▪ Use deep learning (convolutional neural networks) for SAXS/WAXS detector images

▪ Synthetic data for training (mitigates sparsity and imbalance of tagged experimental data)

▪ Can automatically categorize images, identify scattering features or specific materials

▪ Accuracy depends on class

Wang et al. NYSDS 2016
Wang et al. WACV 2017, 1, 697

X-ray Scattering



• Use multiple representations of the data as channels

• We can select representations that are particular well-suited to the scientific dataset

• “Physics-aware” deep learning

Multi-channel Learning



▪ Fourier-Bessel decomposition is devised to “lock-in” on features that matter in scattering

▪ Peaks

▪ Symmetry

▪ Generates a matrix of terms (encoding important features)

▪ Sparse matrix can be used as a “compressed representation,” which can be used for image 
healing and to improve classification

Fourier-Bessel Transform



▪ Compressed representation also useful for classification

▪ Fourier-Bessel decomposition designed to “lock-in” on features that matter in scattering

▪ Peaks

▪ Symmetry

▪ mAP = 80% when transferred to experimental data

Guan et al. BMVC 2018, 0828, 1

Fourier-Bessel Transform



Autonomous Experiments
▪ Automate entire experiment

▪ Sample handling, align, data acquisition

▪ Data analysis

▪ Decision-making

▪ Improves efficiency

▪ More optimal than naïve methods

▪ Can define target (exploration, target, 
consider cost, find novelty)

▪ AI/ML methods yield surrogate 
model, uncertainty

▪ Liberates humans to focus on science

▪ Accelerated material discovery

Noack et al. Scientific Reports 2019, 9, 11809
Noack et al. Scientific Reports 2020, 10, 1325
Noack et al. Scientific Reports 2020, 10, 17663
Noack et al. Nature Reviews Physics 2021, 3, 685



▪ Construct surrogate model

▪ Fit/interpolate data

▪ Select kernel to match physics

▪ Estimate hyper-parameters that match 
data (lengthscales, periodicity, etc.)

▪ Calculate uncertainty surface

▪ Construct objective function

▪ Search for maximum in objective

▪ Optimization problem (genetic 
algorithm, differential evolution, 
deflation)

▪ Control behavior: gradients, cost, etc.

▪ As we iterate, errors decrease (can terminate 
at desired error) and surrogate model 
improves

Noack et al. Scientific Reports 2019, 9, 11809
Noack et al. Scientific Reports 2020, 10, 1325
Noack et al. Scientific Reports 2020, 10, 17663
Noack et al. Nature Reviews Physics 2021, 3, 685

Algorithm: Gaussian Process



▪ Mapping

▪ Coarse-to-fine imaging

▪ Scale of heterogeneity not known a priori

▪ Combinatorial sample arrays

▪ Explore physical parameter space

▪ Spaces may be complex, high-dimensional

▪ Real-time processing

▪ Control material ordering in real-time

▪ Discover transient states and non-
equilibrium process histories

Autonomous X-ray Scattering

Kevin Yager (CFN), Masa Fukuto (NSLS-II)



Materials science

▪ Polymer additive manufacturing depends critically on the welds between layers

Experiment

▪ X-ray scattering mapping of polymer
crystallization

▪ Identified surface ordering (after just 
~40 measurements)

▪ Measure dependence on process 
parameters

Collaboration: Jon Seppala, Tyler Martin (NIST)

POM image
Scattering intensity (a.u.) Crystal grain size (nm)

Polymer 3D Printing



Model/kernel design matters

▪ Autonomous decisions (optimal exploration)

▪ Final reconstruction (insight)

Collaboration: Jon Seppala, Tyler Martin (NIST)

Polymer 3D Printing



Structured Polymer Chains

▪ Spontaneously organize into nanoscale patterns

Responsive Materials

▪ Clever control of processing history can drive 
material into an exotic “non-native” state

Block Copolymers

hexagonal 
cylinders

lamellae



Materials science

▪ Chemical grating controls ordering of block copolymer blends

Demonstrates

▪ AE can find small patches of “unexpected” behavior; algorithm can seek “novelty”

▪ Enabled refinement of processing parameters

Directed Self-Assembly



▪ Autonomy discovered numerous novel morphologies

A. Stein, G. Doerk

Directed Self-Assembly



▪ Autonomy mapped new morphologies

A. Stein, G. Doerk

Directed Self-Assembly



Materials science

▪ Layering self-assembling materials can 
generate new (non-equilibrium) structures

▪ Enormous search space: material selection, 
layering sequence, annealing time, etc.

Experiment

▪ Find rare, interesting transient states

▪ gpCAM explores 2D combinatorial gradients

▪ gpCAM selects next slice to make and 
measure

Sebastian Russell, Suwon Bae

Block Copolymer Layering





Real-time Annealing of BCPs
Materials processing

▪ Block copolymer ordering depends on temperature and time

▪ Photo-thermal annealer allows thin film heating to be controlled

▪ Fast and local heating, large gradients, realtime control

▪ Establish a thermal gradient, and measure changes over time

Demonstrates

▪ Exploration of material during ordering

Collaboration: P. Majewski (U. Warsaw)



▪ Gaussian process

▪ Can be easily applied to any space; no pre-training 
required

▪ Easy to tweak to suit experimental needs (target, cost, 
etc.)

▪ Directly yields model uncertainty and termination criterion

▪ Future: physics priors for guidance and hypothesis testing

▪ Reinforcement learning

▪ Deep learning encodes “policy” for what action to take 
from a given state

▪ Need training data (can pre-train on simulations)

▪ Collaboration with ExaLearn, CSI.

▪ Bayesian model averaging

▪ Assume dynamics are part of a known class of models 
(plus a discrepancy term)

▪ Real-time control guides towards target; data constricts 
distribution of likely models

▪ As knowledge of dynamics improves, real-time control 
improves

▪ Collaboration with Kris Reyes (U. Buffalo, CSI)

Future: Decision Methods

Alexander et al. Inter. J. H.P.C. App. 2021, 598



Physics-aware

▪ Control/constrain surrogate, kernel, cost, etc.

▪ “Prior” from simulations

Realtime processing

▪ Photo-thermal platform for complex annealing 
histories (block copolymers)

▪ Liquid handling for real-time synthesis

▪ Requires fast surrogates, real-time controllers?

Multi-modal

▪ Balance tradeoffs in generality/specificity and rigor/speed

▪ Search for correlations across modules, experiments, etc.

▪ Transfer learning? Federated learning?

Future of AE



Future of Facility Science
▪ Advanced computing and AI/ML
▪ Autonomous experiments liberate scientists
▪ Aggregated and open databases
▪ Remote analytics and instrument control
▪ Transition from a set of disconnected tools,

into an AI/ML software-accessible discovery ecosystem
▪ CFN strategic theme: Accelerated Nanomaterial Discovery
▪ BNL initiative: Human-AI-facility integration
▪ DOE: AI/ML for facilities



• Data Analytics

• ML powerful for scientific data (“understands” X-ray scattering)

• Integrate domain expertise

• Autonomous experiments can explore parameter spaces

• Increases beamtime utilization

• More efficient exploration

• GP directly yields model and 

uncertainty

• Outlook

• Apply to even more challenging materials problems

• Physics-informed

• Realtime processing/synthesis

• Multi-modal

Summary
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