dRICH Re-scaled in DD4hep

Christopher Dilks dRICH Software Meeting 18 May 2022

Available dRICH Software

- Fun4all Standalone: https://github.com/cisbani/dRICh
 - Geometry G4 text file: https://github.com/cisbani/dRICh/tree/main/share/config
 - Updated ECCE Versions: https://github.com/ECCE-EIC/calibrations/tree/main/dRICH/mapping
 - Optics and Material Properties Generation: https://github.com/cisbani/dRICh/tree/main/share/source
- ECCE in DD4hep: https://eicweb.phy.anl.gov/EIC/detectors/ecce

- Compact XML file (constants): compact/drich.xml
- · Placement Algorithms: src/DRICH geo.cpp
- Optical / Material Property Tables: compact/optical materials.xml
- GDML Files available in CI artifacts
- IRT, documentation, and analysis: https://eicweb.phy.anl.gov/EIC/irt
- Development scripts + more documentation: https://github.com/c-dilks/drich-dev
- GEMC: https://github.com/EIC-eRD11/dualRICH_inMEIC

Rescaled dRICH to ECCE Geometry

Gitlab issue:https://eicweb.phy.anl.gov/EIC/detectors/ecce/-/issues/10 See linked merge requests and associated branches

ATHENA master branch dRICH version was copied to the new ECCE repository main branch

The above MR does the following:

- Re-scale and re-position dRICH to match ECCE G4 text file (v5)
 - Match optics
 - Re-parameterize sphere to support optical tuning
- Pull updates from ATHENA unmerged branch 144-irt-geometry:
 - Sensor size and pixel segmentation
 - Change material Silicon → AirOptical (temporary patch, to be updated)
 - Update sensor and mirror surfaces (something here caused a bug...)

Assumed Envelope and Position

Sebastian's slides:

https://indico.bnl.gov/event/15567/contributions/62935/attachments/40804/68 210/dRICH_geometry.pdf

G4 Text file:

https://github.com/ECCE-EIC/calibrations/blob/main/dRICH/mapping/drich-g4model_v5.txt

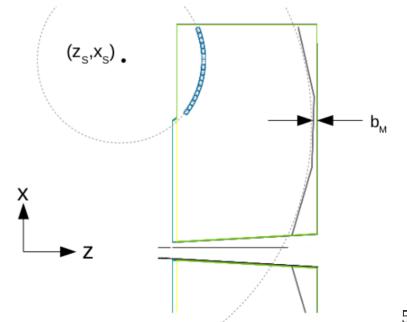
Dimensions:

Units are cm, and positions are w.r.t. IP, given for the sector centered on the +x axis

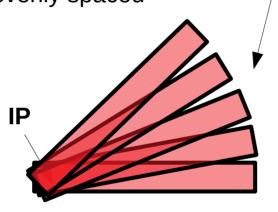
- Occupies z from 180 280
- Outer radius = 180
- Snout parameters:
 - Length: 20 (note: testing a shorter option, with length = aerogel thickness)
 - Radii: projective to back-plane corner
 - Aerogel thickness = 4
- Mirror parameters:
 - Center (z,x) = (79.19, 125)
 - Radius = 200
- Sensor sphere parameters (extracted from spherical fit)
 - Center (z,x) = (71.93, 124,98)
 - Radius = 140

Reparameterize Mirror → **Focus Tuning**

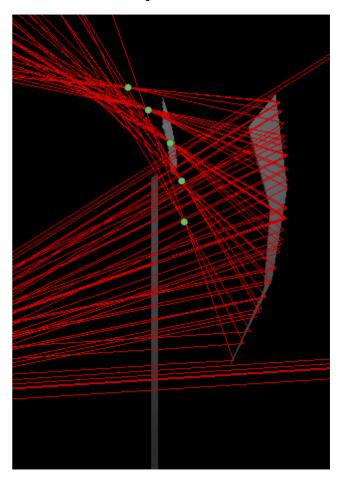
See slides from last meeting for description of these parameters: https://indico.bnl.gov/event/15567/contributions/62933/attachments/40 810/68218/drich-dd4hep.pdf


- Mirror parameters:
 - Center (z,x) = (79.19, 125)
 - Radius = 200

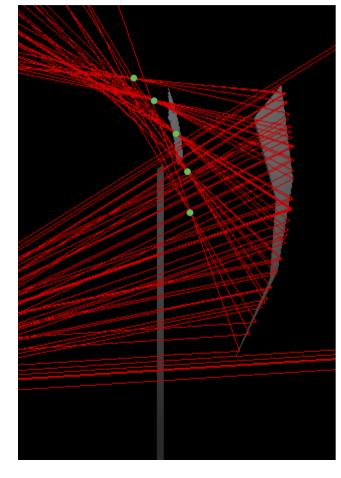

```
<mirror
backplane
              = "DRICH_window_thickness + 0.71*cm"
focus tune x = "69.78*cm"
focus tune z = "51.45*cm"
 />
```


While we could simply use the (center, radius) parameters, having the re-parameterized (backplane, focus tunes) allows for the ability to "steer" the focal region:

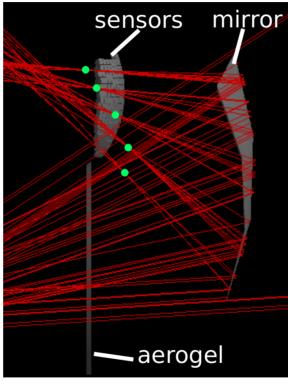
Mirror is parameterized such that the focus is aimed at (z + focus_tune_z , x + focus_tune_x)


Parallel-to-point Focal Regions

- 5, wide collimated photon beams
 - Emitted from IP
 - Within full dRICH polar acceptance, evenly spaced

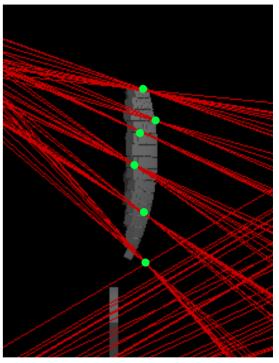

- Parallel-to-point focii indicated by green dots
- Outermost beams are not hitting the sensors

New DD4hep ECCE version

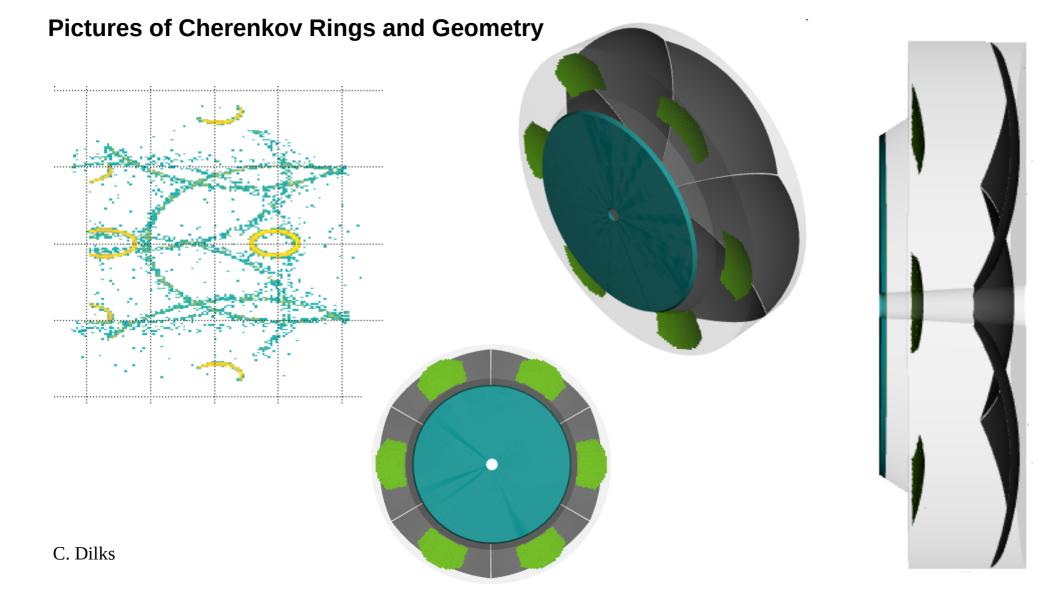


Parallel-to-point Focal Regions

New DD4hep ECCE version



DD4hep ATHENA version


tuned for maximum polar acceptance

DD4hep ATHENA dual mirror test configuration

still plenty of room for improvement!!

Sensors tiled on a sphere may not be ideal... ⁷

Next Steps

- Export new GDML → import in Fun4all
- Review the MR ourselves, then request merging
- Need help with:
 - · Synchronizing property tables with Fun4all
 - · Optical tuning

• ...