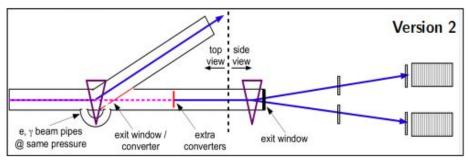
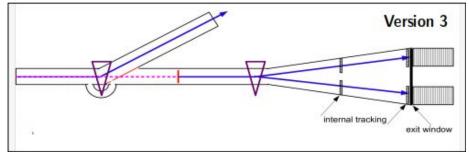
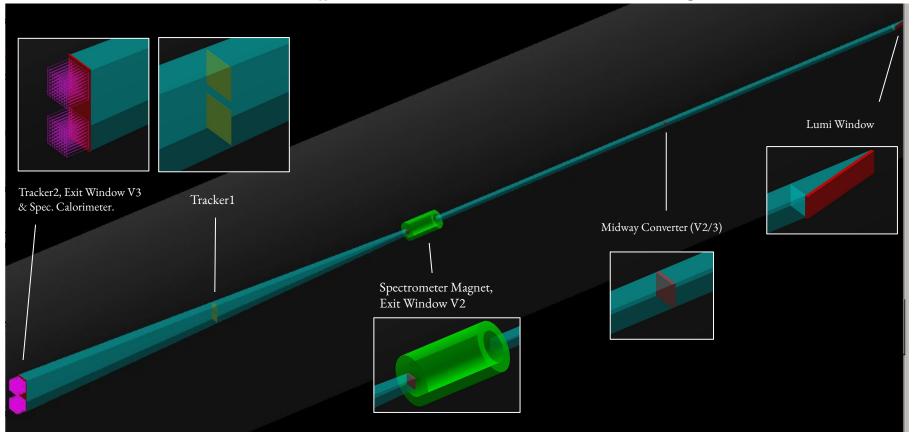

Luminosity Detector Studies in the Fun4All Software Framework


Progress report:


- Implementation of a Luminosity detector is now available to all in the Fun4All software framework.
 - Repo dir: eic/fun4all_eicdetectors/simulation/g4simulation/g4lumi
 - Spectrometer arm with silicon trackers enabled so far.
 - o 3 configurations included: baseline detector + 2 extended vacuum designs.
- Initial simulation results to be shown today:
 - XY distributions of electron/positron hits in trackers

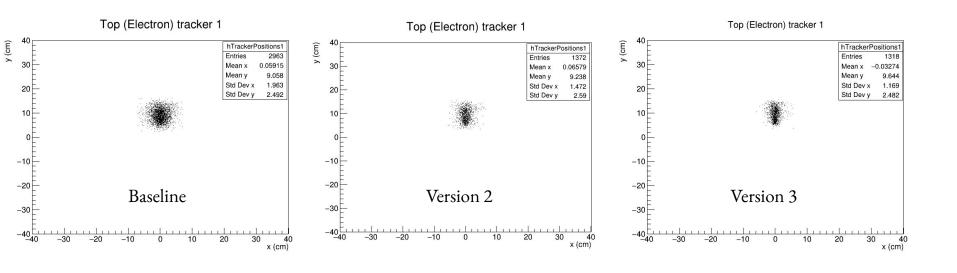
Aranya Giri & Dhevan Gangadharan (University of Houston) 06-16-2022

Possible Designs



 The designs mainly differ in how far the vacuum region extends and where the thick Aluminum exit window is placed.

Geant4 implementation for the Design



Geant4 implementation Paradigm

```
## sizes are in cm and angles in radians
# Lumi Detector Design Version (1.2.3)
Version
# Lumi exit window
LumiWin X
LumiWin Y
LumiWin Z
                        -1850
LumiWin Tilt
                        1.3207963
LumiWin Thickness
                        1.0
LumiWin Height
                        7.4
LumiWin Length
                        29
LumiWin Material
                        G4 Al
# Lumi spectrometer dipole magnet
LumiMag Z
                        -2820
LumiMag innerR
                        10
LumiMag outerR
                        16
LumiMag DZ
LumiMag B
                        0.37
LumiMag VesselMaterial G4 Fe
# Lumi spectrometers up and down
LumiSpec Z
                        -3640
LumiSpec XY
LumiSpec DZ
                        35
LumiSpec YS
#Luminosity direct photon calorimeter
LumiPhotonCAL Z
                        -3700
LumiPhotonCAL XY
                        16
LumiPhotonCAL DZ
                        35
#Tracker2 Details
LumiTracker2 DZ
                        0.06
LumiTracker2 XY
                        20
#Tracker1 Details
LumiTracker1Gap
                        2.0
#Dimension for single ee spectrometer Tower
LumiSpecTower XY
                        2.5
LumiSpecTower DZ
                        17
TotalLumiSpecTower
```

```
// LumiWin Thickness*factor for different exit window versions/Midway Converter.
double factorV1 = 1.0;
double factorV2 = 1.0;
double factorV3 = 1.0;
double factorMC = 1.0;
// Initialisation of diff. volume region.
std::string LumiWin Material = m Params->get string param( "LumiWin Material" );
std::string LumiMag VesselMaterial = m Params->get string param( "LumiMag VesselMaterial" );
std::string TrianTrapMaterial = "G4 AIR";
std::string CuboidMaterial = "G4 AIR";
std::string MagCoreMaterial = "G4 AIR";
std::string RecConeMaterial = "G4 AIR";
std::string ExitWinV2Material = "G4 AIR"
std::string ExitWinV3Material = "G4 AIR"
std::string MidConvMaterial = "G4 AIR":
//Change the material according to Version.
switch(Version){
  case 1: //No change in material def.
    break;
  case 2: TrianTrapMaterial
                                  = "G4 Galactic":
          CuboidMaterial
                                  = "G4 Galactic";
          MagCoreMaterial
                                  = "G4 Galactic":
          MidConvMaterial
                                  = LumiWin Material;
          ExitWinV2Material
                                  = LumiWin Material;
          factorV1
                                  = 0.1;
          break;
  case 3: TrianTrapMaterial
                                  = "G4 Galactic":
                                  = "G4 Galactic";
          CuboidMaterial
                                  = "G4 Galactic";
          MagCoreMaterial
          RecConeMaterial
                                  = "G4 Galactic";
                                  = "G4 Galactic";
          ExitWinV2Material
          MidConvMaterial
                                  = LumiWin Material:
          ExitWinV3Material
                                  = LumiWin Material;
          factorV1
                                  = 0.1:
          break:
  default : std::cout<<"WRONG CHOICE (ONLY 1, 2 & 3)"<<endl;</pre>
            break:
```

According to Version, the material of detector components change.

- 5000 events generated
- 5 GeV photon beam without transverse smearing.
- Hit_points considered only when electron crosses top two trackers and its pair produced positron crosses bottom two trackers.

Top (Electron) Tracker 1

(in cm)	Baseline	Version 2	Version 3
⟨x⟩	0.059	0.066	-0.033
σx	1.963	1.472	1.169
⟨y⟩	9.058	9.238	9.644
σγ	2.492	2.590	2.482

Botton (Positron) Tracker 1

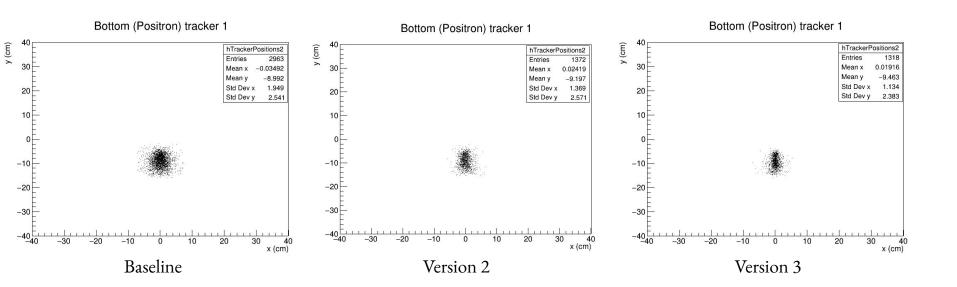
(in cm)	Baseline	Version 2	Version 3
⟨x⟩	-0.035	0.024	0.019
σx	1.949	1.369	1.134
⟨y⟩	-8.992	-9.197	-9.463
бу	2.541	2.571	2.383

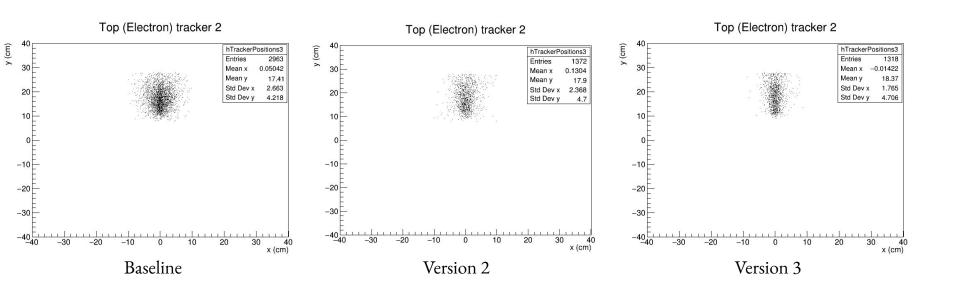
• Spread of hit points along x-axis decreases from baseline to Version 3.

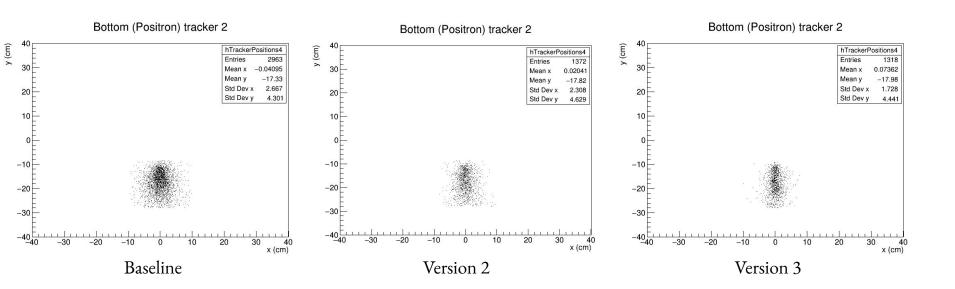
Top (Electron) Tracker 2

(in cm)	Baseline	Version 2	Version 3
$\langle { m x} angle$	0.051	0.130	-0.01422
$\sigma_{\rm x}$	2.663	2.368	1.785
⟨y⟩	17.41	17.9	18.37
σу	4.22	4.7	4.71

• Spread of hit points along x-axis decreases from baseline to Version 3.


Botton (Positron) Tracker 2


(in cm)	Baseline	Version 2	Version 3
⟨x⟩	-0.041	0.020	0.074
σx	2.667	2.308	1.728
⟨y⟩	-17.33	-17.82	-17.98
$\sigma_{ m y}$	4.30	4.629	4.44


Next Steps

- From the hit locations reconstruct the e+e- energy and thus the photon energy.
- Compare E_gen to E_rec for each vacuum configuration to assess the advantages of designs 2 and 3 over the baseline.

BACK UP

