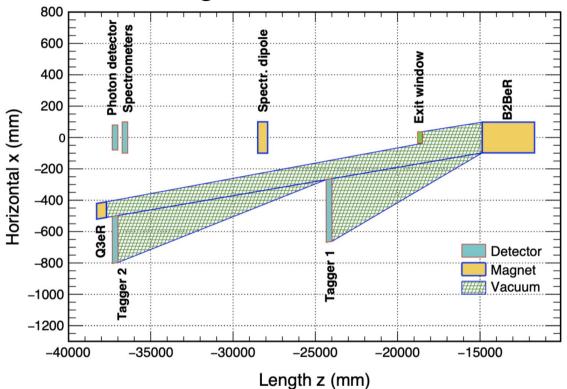

e-Beam divergence / LUMI aperture considerations

W. Schmidke, BNL Det1 Far-backward Mtg. 07.07.2022 Some points here already discussed Far-Backward meeting 02.06.22*

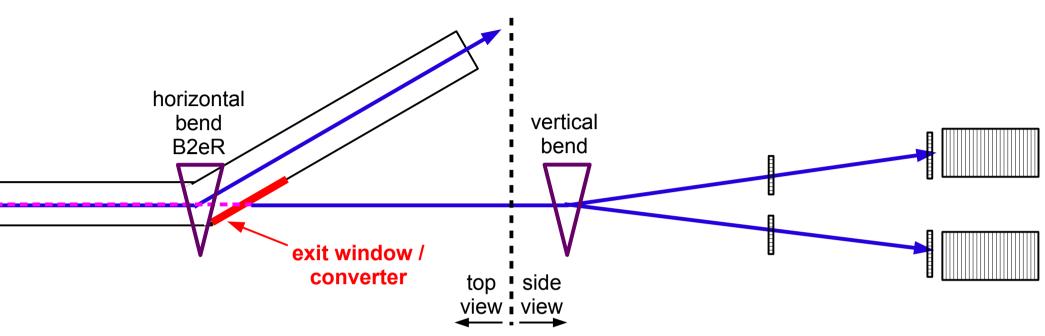
- Electron beam angular divergence from CDR Tables 3.3-3.5:
 Need to measure divergence:
- Correct for photons lost outside aperture:
 - need adequate aperture to measure x,y distribution (some n×RMS)
 - adequate resolution to measure RMS
- Diagnostic for collider ops (emittance)
- Min. aperture driven by largest divergence: 275(p)×10(e) GeV
- Use for estimates: RMS 211 μrad
- Detector resolution driven by smallest divergence:


110(Au)×18(e) GeV

Use for estimates: RMS 37 μrad

LUMI system layout

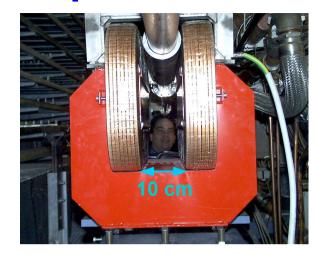
- Hope to develop/improve LUMI vacuum system soon*
- For now take baseline config. from CDR:

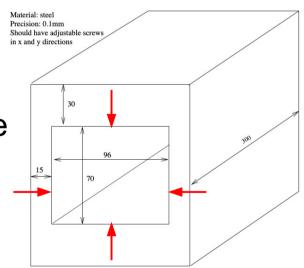


Consider photon RMS spread at:

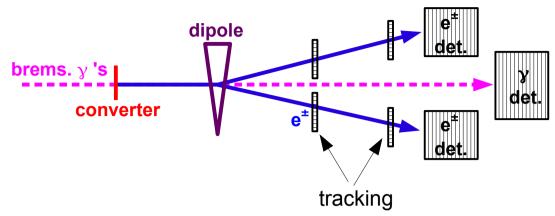
	exit window	spec. dipole	LUMI detectors
D	19 m	28 m	37 m
max. RMS	0.4 cm	0.6 cm	0.8 cm
min. RMS	0.07 cm	0.1 cm	0.14 cm

*Far-Backward meeting 28.04.22 slides 9-11:

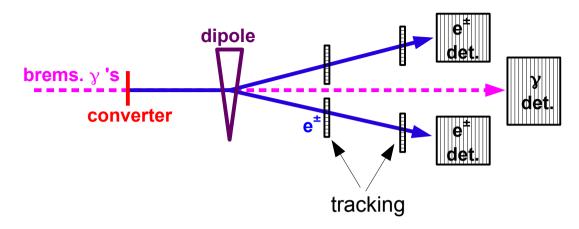

Exit window


- @ 19 m: max. photon RMS size 4 mm
- If want ±10 σ acceptance:
 need window transverse sizes 8×8 cm
- Beam pipe tilt w.r.t. photon direction: much longer in horizontal directions
- Details in a YR Far-Forward/Backward W.G. presentation (Jarda) (links on EICUG web page seem to have been lost)
- Similar size requirements for alternative vacuum system designs

Spectrometer dipole


- @ 28 m: max. photon RMS size 6 mm
- Compare to dipole gap; ZEUS 10 cm:
- Take ZEUS dipole as baseline model nominal B 0.5 T × 0.6 m, Δp_T = 90 MeV

- ZEUS had collimator upstream of dipole:
- Horizontal gap 9.6 cm
 - shield dipole coils from direct photons
 - $\pm 8~\sigma$ acceptance, adequate measure X-profile
- Vertical gap 7 cm
 - shield spec. detectors from direct photons
 - ±6 σ acceptance, adequate measure Y-profile
- Take as baseline model
- For min. e-divergence, photon RMS size 1 mm
- Aperture size 35-48 σ;
 negligible acceptance correction if beam is centered

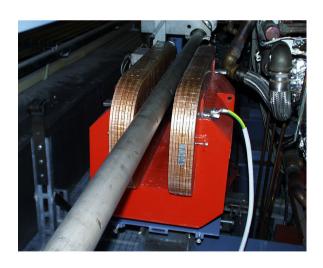

LUMI detector sizes

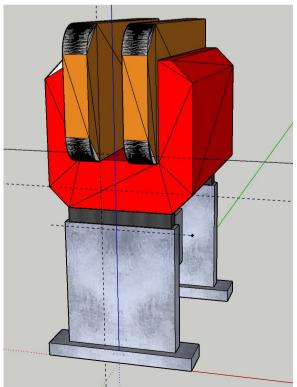
- Collimator aperture @ 28 m projects to detectors @ 37 m: 12.7(h) × 9.3(v) cm
- Minimum active area γ-det.
- Minimum horizontal size e[±]-det.
- Minimum vertical gap between e[±]-det.
- Aperture at tracking detectors scales with Z from dipole: 9.6(h) × 7(v) cm to calorims.: 12.7(h) × 9.3(v) cm
- Spec. detector vertical sizes, spacing discussed previously*:
 - max. vertical span practical, extreme: to the tunnel floor/ceiling
 - highest energy e* (18 GeV) land inside detector

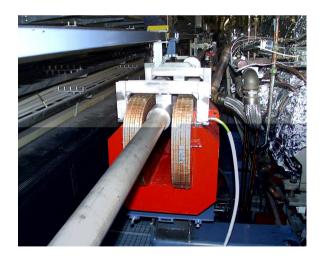
*Far-Backward meeting 02.06.22 slides 4-6: https://indico.bnl.gov/event/15873/contributions/64537/attachments/41268/69137/Det1_FarBack_02.06.22.pdf

LUMI detector resolutions

- e-beam RMS at calorimeters: min./max. 1.4/8 mm
- RMS at tracking detectors scales with Z from dipole: min./max. 1/6 mm to calorims.: min./max. 1.4/8 mm


Measuring smallest e-beam divergence challenging: 1-1.4 mm


- Not so important for acceptance correction (small beam RMS in large aperture, 10's of σ)
- But is important diagnostic for collider operation (e-beam emittance)


Summary

- Here just took some baseline ideas for layout
- Estimated rough numbers for detector parameters
- Will evolve as design matures...

• Yulia has already implemented model of ZEUS dipole:

