Fermilab June 2022 LAPPD beam test second meeting

Alexander Kiselev (BNL)

eRD110 meeting May 19, 2022

Dates, participants, contacts

- Dates: June 13-26, 2022; day shift, main users
- Installation starts on Monday June 13th
 - Martin: June 11 (Sa) 16 (Th)
 - Bob: coming on June 13th for the first week + for June 25-27
 - AK: June 11 28 (Tu)
 - Craig: second week
 - Junqi: will be present for two weeks (?)
 - Sanghwa & Alibordi: two weeks
 - Deb: two weeks, either at Fermilab or (24/7 ⓒ) from Trieste
 - Mark Popecki (Incom): starting from June 14-15, for 7-10 days
 - Murad: ?
- Points of contact: Mandy (<u>rominsky@fnal.gov</u>) and Evan (<u>edniner@fnal.gov</u>)
 ALL: fill the google doc form & arrange your travel NOW
- https://docs.google.com/spreadsheets/d/1MpT8MzPG02ae0jojpN0lcxNROjUcGsUL_oZKnAulRNI/edit gid=0

Experimental setup in MT6.2C

- G1.. G4 COMPASS GEM reference tracker
- S1.. S2 trigger scintillator counters
- Either mRICH or pfRICH configurations require
 - Replacing aspheric lens by aerogel container (and a Fresnel lens in case of mRICH)
 - a 180-degree rotation of the LAPPD / HRPPD assembly

Incom tiles

- 20cm Gen II LAPPD will be rented for May-August on eRD110 budget
 - New spacer configuration \otimes
 - 10 µm pore MCPs
 - Hopefully: 2 mm thin ceramic base plate and short ceramic walls
 - Na₂KSb photocathode
 - Window material -> UV grade quartz (see Sanghwa's slides)

→ Being sealed now; expected at BNL by the end of May

- 10cm Gen II HRPPD of a similar build
 - Chances are high it is sealed and passes the QA at Incom by mid June

 \rightarrow If this happens, Mark will bring the tile in his suitcase

HRPPD holding structure

Readout boards

Bare boards: ordered, will be shipped to BNL around May 25 Assembly (+ additional pair of MCX adapters): order is being placed

Other equipment

- First Planacon (Argonne) available
- Second Planacon (INFN) will be at BNL June 2^d (may require some work)
- GEM tracker still in boxes after the June 2021 beam test
- Aerogel with n ~ 1.030 and mRICH mockups shipped from GSU last week
- DRS4 electronics (including a separate box for the beam line Cherenkov counters), VME crate, readout PC, trigger scintillators, NIM logic, light tight enclosure, aspheric lens(es), still useable 2020-2021 readout boards – all available
- A "spare" DREAM readout card from Saclay arrived this week
- Gas for the GEM tracker is being ordered
- CAEN V1742 cross-module synchronization cables ordered, will be at BNL by end of May
- Trigger module (or other related hardware) will be provided

The case for a second Planacon

- It is always good to have some redundancy in the system ...
- ... but it can also happen that the LAPPD / HRPPD timing resolution will be way better than of the reference Planacon, in our configuration:
 - Given the QE plot below, a relativistic charged particle will nominally (if PDE was equal 1) produce a ~1cm diameter blob of ~150 p.e.'s in a 5mm thick UV grade quartz window [see also Sanghwa's talk today]
 - We know that a single p.e. signal in a central 4mm pad of a cluster has MPV amplitude of ~10-15mV ...
 - ... so, we will be seeing signals >500mV, without any pre-amplification
 - V1742 DRS4 implementation by CAEN has only 500 MHz bandwidth (+ traces and cables add a lot, see below)
 - A couple of mV noise level per sample and rise time ~1ns (or so) is what we see in the data
 - Therefore, a "theoretical" limit for us is perhaps ~333 MHz bandwidth, closer to case (b) than case (a) in the below table, just given the expected S/N ratio, see https://arxiv.org/ftp/arxiv/papers/1405/1405.4975.pdf

$\Delta t = \frac{\Delta u}{U} \cdot \frac{\sqrt{t_r}}{\sqrt{f_s}} = \frac{\Delta u}{U} \cdot \frac{1}{\sqrt{3f_s \cdot f_{3dB}}}.$						(4	
Case	U (mV)	Δu (mV)	t _r (ns)	f _{3dB} (MHz)	f _s (GSPS)	Δt (ps)	
a)	10	1	1	333	5	45	
b)	450	1	1	333	5	1	
c)	100	1	0.35	950	5	2.6	
d)	500	0.35	1.6	-	5	0.5	
e)	63	0.35	0.2	-	5	1.1	

Table 1: Theoretical limit of the achievable time resolution Δt for certain signal and sampling parameters.

- Complementary information on signal losses:
- 6' long RG-174 cable: ~1.8 dB @ 1 GHz
- Traces in the PCB stack are several inches long, with an estimated loss ~0.25 dB/inch @ 1 GHz

Software

- DREAM driver debugging June
- DRS4 timing calibration database should be ready (software-wise) by end of May
- Online monitoring and near online data analysis time to start revamping the codes