

Modular Ring Imaging CHerenkov Detector (mRICH)

Murad Sarsour, GSU

mRICH R&D project: eRD101 eRD14: PID consortium

 Compact PID device with momentum coverage up to 10 GeV/c for π/K and e/π up to 2 GeV/c or more.

mRICH Concept

Overview:

- Modular and compact RICH detector (~11x11x25 cm)
- Radiator: Aerogel, L~3 cm and n=1.03
- Focusing: 6" Fresnel lens

3.3cm thick aerogel

foam holder of aerogel

 π/K separation up to 10 GeV/c and e/ π separation up to 2 GeV/c.

Systematic effects

- Emission point error: minimized at the lens focal plane
- Chromatic dispersion error: reduced by UV filtering (acrylic).
- Pixel size error: the uncertainty raised by pixel size, *a*, error

Prototyping & Beam Tests

• Two beam tests: 2016 and 2018.

Fermilab Beam Test Facility

1st and 2nd Beam Test Comparison (120 GeV Proton Beam)

verified mRICH working principle and validated simulation

1st mRICH prototype was tested at Fermilab Test Beam Facility in April 2016

New features: a) separation of optical and electronic components; b) longer focal length (6"); c) 3mm x 3mm photosensors.

2nd mRICH prototype was tested at Fermilab Test Beam Facility in June/July 2018

C.P. Wong et. al. NIM A871, 13-19 (2017)

500

400

300

200

100

JLab Beam Test (1-6 GeV/c Secondary Electron Beam)

• Determine the single photon angular resolutions

Second LAPPD@Fermilab

Wish list for mRICH?

- ➤ Mirror
- Sensor location
- Aerogel thickness
- ≻7" lens?

mRICH R&D: Mirror Study

- 0.5 mm Mirror thickness
- ✤ 0.5 mm carbon fiber frame

mRICH R&D: Sensor Position

mRICH R&D: Aerogel Thickness

Additional Slides

Reconstruction/ PID

Focusing on a single module for performance studies!

Ring radius without considering the sensor pixelization!

mRICH – lens-based focusing aerogel detector design

Smaller, but thinner ring improves PID performance and reduces length

mRICH – lens-based focusing aerogel detector design

Smaller, but thinner ring improves PID performance and reduces length

mRICH – lens-based focusing aerogel detector design

Ring centering of lens-based optics reduces sensor area (main cost driver)

