Right-Handed W-Boson

Right-Handed W-Boson

				SU(3)	$SU(2)_L$	$U(1)_Y$
$Q_L^i =$	$\left(\begin{array}{c} u_L \\ d_L \end{array} ight)$	$\left(\begin{array}{c} c_L \\ s_L \end{array}\right)$	$\left(\begin{array}{c}t_L\\b_L\end{array}\right)$	3	2	$\frac{1}{6}$
$(u^c)^i_L =$	$(u^c)_L$	$(c^c)_L$	$(t^c)_L$	$\overline{3}$	1	$-\frac{2}{3}$
$(d^c)^i_L =$	$(d^c)_L$	$(s^c)_L$	$(b^c)_L$	$\bar{3}$	1	$\frac{1}{3}$
$L_L^i =$	$\left(\begin{array}{c} \nu_{eL} \\ e_L \end{array}\right)$	$\left(egin{array}{c} u_{\mu L} \\ \mu_L \end{array} ight)$	$\left(\begin{array}{c} \nu_{\tau L} \\ \tau_L \end{array}\right)$	1	2	$-\frac{1}{2}$
$(e^c)^i_L =$	$(e^c)_L$	$(\mu^c)_L$	$(\tau^c)_L$	1	1	1

• Electroweak interactions in the Standard model violates parity maximally.

• The W-boson has interactions only with the lefthanded quarks and leptons.

 Right-handed neutrinos, as evidenced by neutrino oscillations, require physics beyond the Standard Model

 Left-Right Symmetric Models restore the symmetry between and left and right-handed quarks and leptons at high energies beyond the electroweak scale:

$$\mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R \otimes \mathrm{U}(1)_{B-L} \longrightarrow \mathrm{SU}(2)_L \otimes \mathrm{U}(1)_Y$$

• Left-Right symmetric models predict the existence of new degrees of freedom, including a heavy right-handed w-boson and heavy right-handed neutrinos.

Right-Handed W-Boson

Right-Handed W-Boson at EIC

• The lower center of mass energy (compared to HERA) at the EIC will lead to smaller charged current cross sections.

• However, the higher luminosity and degree of lepton beam polarization at the EIC can lead to higher precision on the charged current cross section measurements.

• Higher precision could lead to stronger mass bounds.

SM Polarization Dependence of Charged Current Cross Section

• The Standard Model W-boson only couples to left-handed electrons and right-handed positrons:

$$\sigma_{\rm SM}^{e^{\pm}p}(P_e) = (1 \pm P_e)\sigma_{\rm SM}^{e^{\pm}p}(P_e = 0) , \qquad P_e = \frac{N_R - N_L}{N_R + N_L}$$

• Electron and positron beams act as independent probes of the polarization dependence charged current cross section due to the difference in initial state PDFs that contribute:

$$\frac{\sigma_{\rm SM}^{e^+p}(P_e)}{dx\,dQ^2} = (1+P_e)\frac{G_F^2}{2\pi} \Big(\frac{M_W^2}{M_W^2+Q^2}\Big)^2 \Big[\bar{u}(x,Q^2) + \bar{c}(x,Q^2) + (1-y)^2 \Big(d(x,Q^2) + s(x,Q^2)\Big)\Big]$$

$$\frac{\sigma_{\rm SM}^{e\ p}(P_e)}{dx\ dQ^2} = (1-P_e)\frac{G_F^2}{2\pi} \Big(\frac{M_W^2}{M_W^2+Q^2}\Big)^2 \Big[u(x,Q^2) + c(x,Q^2) + (1-y)^2 \Big(\bar{d}(x,Q^2) + \bar{s}(x,Q^2)\Big)\Big]$$

BSM Polarization Dependence of Charged Current Cross Section

• SM polarization dependence:

$$\sigma_{\rm SM}^{e^{\pm}p}(P_e) = (1 \pm P_e)\sigma_{\rm SM}^{e^{\pm}p}(P_e = 0) \longrightarrow \sigma_{\rm SM}^{e^{\pm}p}(P_e = \mp 1) = 0$$

• Polarization dependence in the presence of a right-handed W boson (with SM coupling strength):

$$\sigma^{e^{\pm}p}(P_{e}) = (1 \pm P_{e}) \ \sigma^{e^{\pm}p}_{\rm SM}(P_{e} = 0) + (1 \mp P_{e}) \ \sigma^{e^{\pm}p}_{\rm SM}(P_{e} = 0, M_{W} \to M_{R})$$

$$\downarrow$$

$$\sigma^{e^{\pm}p}(P_{e} = \mp 1) = 2 \ \sigma^{e^{\pm}p}_{\rm SM}(P_{e} = 0, M_{W} \to M_{R}) \neq 0$$

$$\sigma^{e^{\pm}p}(P_e = \mp 1) = 2 \sigma^{e^{\pm}p}_{\mathrm{SM}}(P_e = 0, M_W \to M_R)$$

95% confidence interval of measurement leads to upper bound

$$\sigma_{\rm SM}^{e^{\pm}p}(P_e = 0, M_W \to M_R) < \frac{\sigma_{\rm upper \ bound}^{e^{\pm}p}(P_e = \mp 1)}{2}$$

$$\sigma_{\rm SM}^{e^{-p}}(P_e = 0, M_W \to M_{W_R}) = \int_{Q_{\rm min}^2}^s dQ^2 \int_{\frac{Q^2}{s}}^1 dx \frac{G_R^2}{2\pi} \left(\frac{M_R^2}{M_R^2 + Q^2}\right)^2 \left[u + c + (1 - y)^2(\bar{d} + \bar{s})\right]$$

MR dependence leads to a mass limit

Preliminary Simulation Results

Assumed polarization uncertainty:

$$\Delta P_e/P_e \sim 1\%$$

Assumed systematic uncertainty:

~ 3%

 $\sqrt{s} = 63.25 \text{ GeV}$

• 95% CL upper bound:

 $\sigma^{e^+p}(P_e = -1) < 0.0207 \text{pb}$

• WR-boson mass limit:

 $M_R \gtrsim 270 \text{ GeV}$

• Center of mass energy:

 $\sqrt{s} = 109.5 \text{ GeV}$

- 95% CL upper bound: $\sigma^{e^+p}(P_e = -1) < 0.0776 \text{pb}$
 - WR-boson mass limit:
 - $M_R \gtrsim 285 \text{ GeV}$

Procedure for CC We Analysis

1. Get
$$\sigma(P_e=0)$$
 by running OJANGOH:
- 18 X 275 GeV con Riguration
- $Q^2 > 100 \text{ GeV}^2$
 $\Rightarrow \sigma(P_e=0) = 24 \cdot 1 \text{ pb}$

3.

2. Cross-section at all other values of Pe:

$$\sigma(P_e) = (1 - P_e) \sigma(P_e = 0)$$

Cross-section concertainty:
- Statistical:
$$\frac{S\sigma^{stat:}}{\sigma} = \frac{1}{\sqrt{N}} \Rightarrow S\sigma^{stat:} = \frac{\sigma}{\sqrt{N}}$$

 $\Rightarrow S\sigma^{stat}(P_e) = \frac{(1-P_e)\sigma(P_e=0)}{\sqrt{(1-P_e)N}}$
 $N = \mathcal{I} \sigma(P_e=0)$
 $\therefore S\sigma^{stat}(P_e) = \frac{(1-P_e)\sigma(P_e=0)}{\sqrt{(1-P_e)\mathcal{I}}\sigma(P_e=0)}$
 $\therefore S\sigma^{stat}(P_e) = \sqrt{\frac{(1-P_e)\sigma(P_e=0)}{\mathcal{I}}}$

$$\frac{S\sigma^{sys.}}{\sigma} = 0.03$$

:.
$$55^{54}(R_e) = 0.03(1-R_e) \sigma(R_e=0)$$

- Polerizetion uncertainty (1%)

$$\delta P_e = 0.01 P_e$$

 $\sigma(P_e) = (1 - P_e) \sigma(P_e = 0)$
 $\therefore \delta \sigma^{\text{Pol}}(P_e) = -\delta P_e \sigma(P_e = 0)$
 $\therefore \delta \sigma^{\text{Pol}}(P_e) = -0.01 P_e \sigma(P_e = 0)$

Thus, adding in quadrature, the total uncertably:

$$50^{+0+} = \sqrt{(50^{-5+0+})^2 + (50^{-5+0+})^2 + (50^{-0+})^2}$$

$$\sum_{k=1}^{2} \delta \sigma^{k+1} = \sqrt{(1-P_{e})\sigma(P_{e}=0)} + (0.03(1-P_{e})\sigma(P_{e}=0))^{2} + (0.01P_{e}\sigma(P_{e}=0))^{2}$$

Cross Section as Function of Beam Polarization

 P_e

Preliminary Simulation Results

Next Steps

- Write C++ code to get CC cross section as a function of M_R .
- Use this code to determine lowest allowed value of M_R to saturates allowed cross section bound.
- Include PDF error? Can generate total charge current cross section using different PDF sets to extract PDF error and include it in the analysis.