

EIC Detector 1 Tracking Detector status and Integration with ToF

Xuan Li (Los Alamos National Laboratory) on behalf of the EIC Detector 1 Tracking Working Group

1

Outline

- Introduction to the ECCE reference design for the tracking subsystem.
 - Design
 - Performance
- EIC Detector 1 tracking detector work plan
 - Detector geometry optimization.
 - Performance validation
 - Technology options, mechanical and readout developments
- Integration with the ToF

Detector 1 reference design: ECCE tracking detector (II)

- The ECCE tracking detector consists of integrated MAPS, μRwell and AC-LGAD tracking subsystems. Detailed detector segmentation and service parts have been implemented in the Fun4All framework.
- The ECCE tracking detector layout:
 - Barrel: 5 MAPS layers, 3 μRwell layers and 1 AC-LGAD layer. Inner Radius: 3.3 cm, Outer Radius: 77.0 cm.
 - Hadron endcap: 5 MAPS planes and 1 AC-LGAD plane. Minimum z: 25 cm, Maximum z: 182 cm.
 - Electron endcap: 4 MAPS planes and 1 AC-LGAD plane. Minimum z: -155.5 cm, Maximum z: -25 cm.

Material budget scan

• From the Fun4All simulation, material budget scan of the ECCE detector subsystems.

ECCE Tracking momentum resolution

• Track momentum dependent momentum resolution.

ECCE Tracking DCA_{2D} resolution

• Track p_T dependent DCA_{2D} resolution.

EIC Detector 1 Tracking Detector developments

- About the EIC detector 1 tracking working group:
 - Conveners: Xuan Li (xuanli@lanl.gov), Kondo Gnanvo (kagnanvo@jlab.org), Laura Gonella (laura.gonella@cern.ch), Francesco Bossu (francesco.bossu@cea.fr)
 - Email mailing list: eic-projdet-tracking-l@lists.bnl.gov
 - We have bi-weekly weekly scheduled at 11:00AM US eastern time every other Thursday and the meeting indico link: <u>https://indico.bnl.gov/category/404/</u>
 - Mattermost channel: <u>https://eic.cloud.mattermost.com/main/channels/tracking</u>
 - WIKI page: <u>https://wiki.bnl.gov/eic-project-</u> <u>detector/index.php/Tracking#EIC_Project_Tracking_Working</u> <u>Group</u>
- Welcome new collaborators to join us!

EIC Detector 1 work plan and status

- Simulations:
 - Simulation task break down and priority list in <u>https://docs.google.com/spreadsheets/d/1Jp1-</u> <u>V7MavZFejn2SG185YarbMIpGCByGfF7yz4Y-Azc/edit?usp=sharing</u>
- Technology review:
 - Complete review of the choice of tracking technologies.
 - Identify risks & fallback solutions for each technology.
 - Establish the timelines to CD2/3A.
 - Close coordination with the detector consortia (EIC-SC, eRD108).
- EIC Tracking Detector configuration:
 - By July EICUG, the baseline configuration "aka advanced conceptual design" of the tracking detector is established
- Requirements inputs from the physics WGs:
 - List of key tracking requirements such as momentum resolution, vertex and projection spatial resolutions.

EIC Detector 1 Tracking work status

- The simulation software selection: Fun4All or DD4HEP, 1st meeting about the software status has been held on Jun. 2. Decided the simulation tasks and the priority list.
- Upcoming meetings will focus on:
 - Background studies and impacts on the tracking performance.
 - Detector technology inputs from consortium (e.g., EIC Si consortium, MPGD consortium) and eRD (e.g., eRD108, eRD 111, eRD112).
 - Tracking performance evaluation with the geometry optimization.
 - Detector integration with other detector subsystems.

Tracking Integration with the AC-LGAD ToF

- We plan to have joint meetings with the AC-LGAD ToF WG and here is the list of questions about the detector integration.
 - For the tracking and ToF integration, any space limitations in x-y-z for the proposed ToF in the barrel, hadron-endacap and electron-endcap regions? This will help us work on the tracking geometry optimization in parallel with the ToF geometry updates.
 - We would like to get the latest hit spatial resolution of the ToF layer/disk into simulation and get the values implemented in simulation, this will help us evaluate the integrated tracking performance including the ToF layer/disk.
 - Any specific tracking performance or matching or projection requirements from the ToF WG?

Summary and Outlook

- We are in the process of optimizing the tracking detector geometry and validating the tracking performance.
- We plan to schedule joint discussions with the PID WGs about the integration and seek feedback.
- We welcome your inputs and suggestions.

Backup

ECCE silicon vertex/tracking detector geometry

• The ECCE tracking detector geometries have been archived in the Fun4All ECCE associated repositories.

Barrel index	R (cm)	z _{min} (cm)	z _{max} (cm)
1	3.3	-13.5	13.5
2	4.35	-13.5	13.5
3	5.4	-13.5	13.5
4	21.0	-27	27
5	22.68	-30	30

H-endcap index	z (cm)	r _{in} (cm)	r _{out} (cm)
1	25	3.5	18.5
2	49	3.5	36.5
3	73	4.5	40.5
4	106	5.5	41.5
5	125	7.5	43.5

e-endcap index	z (cm)	r _{in} (cm)	r _{out} (cm)
1	-25	3.5	18.5
2	-52	3.5	36.5
3	-79	4.5	40.5
4	-106	5.5	41.5