SIDIS-EIC

Common Analysis Framework for SIDIS

https:/igithub.coml/c-dilks/sidis-eic

Christopher Dilks
24 May 2022

Duke

UNIVERSITY

https://github.com/c-dilks/sidis-eic

Upstream: Event Generation

Full and Fast Simulation
Pythia8 ‘

FULL
DD4hep ATHENA FULL — FAST
= = Fun4all Delphes
€an Geant4
L EventEvaluator
Juggler l
v '

ROOT TTrees ROOT TTrees ROOT TTrees

SIDIS-EIC

Common Analysis Framework

Full simulation
(DD4hep - Juggler)

https:/igithub.com/c-dilks/sidis-eic

Classes are underlined

Full simulation

(Fun4all - EventEvaluator)

Fast simulation
(Delphes)

Analysis $ Y *
AnalysisFun4all AnalvsisDeloh
AnalysisDD4hep TO DO nalysisDelphes

C. Dilks

:

Kinematics

\

Output Data
Structures

(Adage, SimpleTree)

PostProcessor
Binned analysis,
Plots, etc.

https://github.com/c-dilks/sidis-eic

Analysis

* Base class Analysis provides common functionality
* Prepare() reads input and initializes:
* Output data structures
* Instances of Kinematics: one for truth and another for reconstructed
* Finish() writes to output
» Contains numerous configuration settings
* Binning scheme
* Reconstruction method
* Final State (single hadrons, jets, ...)
* Includes methods to fill output data structures, called by derived classes

« Derived classes AnalysisDelphes, etc. tuned to read respective ROOT trees
* Execute(): the main method to perform the analysis

* Analysis::Prepare()

* Event loop (with sub-loops over tracks, jets, ...)
* Read input TTree variables
e Set input variables of Kinematics
« Call Kinematics calculation methods
* Fill output data structures

* Analysis::Finish()

C. Dilks

Kinematics
* 2 Instances: reconstructed and generated
* Input variables:

* Beam momenta

» Scattered electron

* Hadronic Final State (HFS)

* Single hadrons (SIDIS) // reconstruction methods

« Jets CalculateDISbyElectron();
* Calculations: CalculateDISbylB();

 CalculateDIS(): various reconstruction methods available (-) CalculateDISbyDA();

 CalculateHadronicKinematics(): single hadron SIDIS variables CalculateDISbyMixed();

 CalculateJetsKinematics(): jet variables CalculateDISbySigmal();

* Uses fastjet CalculateDISbyeSigma();
* Implemented only for AnalysisDelphes
« TODO: implement in AnalysisDD4hep & AnalysisFun4all, or separately (AnalysisJets)?
* Ouput variables:
* DIS: Q%4 X, Y, W, ...
* HFS variables: Z, ...
- SIDIS Hadron: p, p,, 2, ¢,, ...

« Jetsiz,p,Q, ...

* Includes boost functions

DETAILS:
https://github.com/c-dilks/sidis-eic/blob/docker-base-jug-xl/doc/kinematics.md 5

[to be merged to main branch soon]

https://github.com/c-dilks/sidis-eic/blob/docker-base-jug-xl/doc/kinematics.md

slide from Connor:

Current jet implementation
in AnalysisDelphes

Jet clustering using fast jet and Delphes energy flow objects with pT > 0.1 GeV
EFlowTracks, EFlowPhotons, EFlowNeutralHadrons
four-momenta from MC particle bank also clustered to get true jets

Currently, semi-inclusive jets using anti-kT (R=0.8) algorithm clustered, then
used to calculate other variables/fill histograms

*Zhy)L, 4T etc.

C. Dilks 6

4D Binning in (z,y,Q%X)
Output Data Structures root node @

Adage: Directed Acyclic Graph (DAG) that stores:
« Data, in arbitrary multi-dimensional bins and cuts

* 1 “layer” of nodes = 1 variable’s bins or cuts
* Layers are fully connected to adjacent layers
* 1 multi-dimensional bin = 1 full graph path from root node to leaf node
» Stores associated set histograms (Histos, HistosDAG)
* TODO: generalize to store anything
control subloop

« Algorithms, executable during graph traversal (no nested for loops!) {Q2,x}
* Run “payload algorithm” on every bin or on any subset of bins
* Graph layers can be re-ordered (switches inner and outer “loops”)
* Allows for “binning agnostic” code

* Prototype developed within SIDIS-EIC

In practice:

1) Define your bins
C. Dilks 2) Define your algorithms \“/

3) Run leaf node)

Output Data Structures

- SimpleTree — flat TTree, useful for quick tests etc.
* Reconstructed SIDIS variables
* Has been used for SIDIS single-hadron asymmetries
« Straightforward to connect to other analysis libraries and add more variables

e Support for Custom Data Structures and Algorithms
« Existing data structures may not suit our future needs
* Implement custom data structures
« TODO: add plugin support

SimpleTree

3 Q5q 3 Depol2
X §» Depoi3
ﬁ‘f ﬁDepuH
W 4 HadPID
W & Spin_idx
ﬁw{ ﬁSpinL_idx
ih PhPem 3 Weight
b PhiH

& Phis

& TruePhiH

ﬁTrueF‘hiS

% PalT

i Pall

i PolB

3 Depoll

« Class methods Prepare(), Fill(), Finish() = before all events, for each event, after all events

e Support usage with Adage

C. Dilks

How to Add a new Analysis: Macros

® Analysis Macro
* Choose AnalysisDelphes, AnalysisDD4hep, AnalysisFun4all
» Configure
* Reconstruction Method
* Final states (single hadron, jets, ...)
* Cuts
* Binning Schemes (construct Adage)
» Call Execute()

® Post-Processing Macro (if using Adage)
» Define algorithms (lambdas), such as:
* Draw histograms
* Manipulate histograms (statistics, math, ...)
« Common algorithms available in PostProcessor
» Configure Adage graph traversal
* That is, when the algorithms should execute
e Call Execute()

C. Dilks

Example coverage plot: nvs. p in (x,Q? bins, with PID limits

C. Dilk

QnN2}

10x275

T dRICH L, pi+ tracks
¥ | z>0.2

;—bToFJ
| hpDIRC

| -
’_><:(................] ; o -....
10 p(Ge\})oz

i \
1 pfRICH

plae]

figure from
Connor Pecar

10

Example benchmark plot: pion Z o Zgon from fast and full simulations, in (x,Q?) bins

<
[¢]

10°

102

10

C. Dilks

— fastsim
— fullsim
1 h
‘ i
| r
‘ g i L
"1 |
| figure from
1 1 Continuous
0O TR LI 1 S A T3 N ‘ Integration

1072

107"

?

11

Example benchmark plot: vy, from fast and full simulations, in pion (p,n) bins

4

#eta

E — fastsim 1
. |—fullsim o |
- S = o |]
A b J‘{; 1
- j ; Igl
- \J A $ 1“\111 - & |
o__ E lﬂ : : J lLJLELu., i f Lplﬂ"u.
- I J i
- ; k -
L i mﬂl. | i JJF 1]
E I
. | jl figure from
- f Continuous
L i S Integration

C. Dilks 1071 | | | 1 | | 1] | | 1 | | | 1 0 | | | | | | | \‘H)z 12

Continuous Integration (Cl) https://github.com/c-dilks/sidis-eic/actions

Executes on every Git commit (pull request):

&l Compile SIDIS-EIC

il Run Delphes — AnalysisDelphes

il Stream Full Simulation Output — Analysis DD4hep

! Output (artifacts)
* Fast vs. Full simulation comparison plots: coverage, resolution, etc.
- Effects of varyingy . cuts

e Add your plots, ROOT files, ... (limited to small statistics)

Matriz: benchmark-fastsim

build 6 jobs completed collect

B Artifacts:
Matrix: delphes-fastsim - Benchmark plOtS
- Delphes root files
4 jobs completed Matroe: benchmark-fullsim _

S3 EVGEN
hepmc files

Show all jobs .
6 jobs completed

Show all jobs

S3 RECO
fullsim root
file URLs

config-fullsim

https://github.com/c-dilks/sidis-eic/actions

Getting Started

W Setup (see README.md)
* Use the Singularity or Docker image: based from eicweb/jug_xl

 Includes Delphes, in addition to jug_xl software
» Alternatively, local install (+dependencies)
u Follow README.md for documentation
w Follow Tutorials for example macros (tutorial/ README.md)

Contributions are Welcome
w Fork SIDIS-EIC
& New branch - write code - pull request

w Github Workflow Tutorial:
https://git-scm.com/book/en/v2/GitHub-Contributing-to-a-Project

C. Dilks

14

https://eicweb.phy.anl.gov/containers/eic_container
https://git-scm.com/book/en/v2/GitHub-Contributing-to-a-Project

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

