
SIDIS-EIC
Common Analysis Framework for SIDIS

Christopher Dilks
24 May 2022

https://github.com/c-dilks/sidis-eic

https://github.com/c-dilks/sidis-eic

C. Dilks 2

Upstream:
Full and Fast Simulation

Event Generation

Delphes

ROOT TTreesROOT TTrees

Juggler

DD4hep ATHENA

Geant4
Fun4all ECCE

Geant4

EventEvaluator

ROOT TTrees

Pythia8

hepmc

EIC

ATHENA

ECCE

FULL FULL FAST

C. Dilks 3

Analysis

SIDIS-EIC
Common Analysis Framework

Full simulation
(DD4hep → Juggler)

AnalysisDD4hep

Output Data
Structures

(Adage, SimpleTree)

PostProcessor
Binned analysis,

Plots, etc.

Full simulation
(Fun4all→EventEvaluator)

Kinematics

AnalysisFun4all
TO DO

https://github.com/c-dilks/sidis-eic

Fast simulation
(Delphes)

AnalysisDelphes

Classes are underlined

https://github.com/c-dilks/sidis-eic

C. Dilks 4

Analysis

● Base class Analysis provides common functionality
● Prepare() reads input and initializes:

● Output data structures
● Instances of Kinematics: one for truth and another for reconstructed

● Finish() writes to output
● Contains numerous configuration settings

● Binning scheme
● Reconstruction method
● Final State (single hadrons, jets, …)

● Includes methods to fill output data structures, called by derived classes

● Derived classes AnalysisDelphes, etc. tuned to read respective ROOT trees
● Execute(): the main method to perform the analysis

● Analysis::Prepare()
● Event loop (with sub-loops over tracks, jets, …)

● Read input TTree variables
● Set input variables of Kinematics
● Call Kinematics calculation methods
● Fill output data structures

● Analysis::Finish()

C. Dilks 5

Kinematics
● 2 Instances: reconstructed and generated
● Input variables:

● Beam momenta
● Scattered electron
● Hadronic Final State (HFS)
● Single hadrons (SIDIS)
● Jets

● Calculations:
● CalculateDIS(): various reconstruction methods available (→)
● CalculateHadronicKinematics(): single hadron SIDIS variables
● CalculateJetsKinematics(): jet variables

● Uses fastjet
● Implemented only for AnalysisDelphes

● TODO: implement in AnalysisDD4hep & AnalysisFun4all, or separately (AnalysisJets)?
● Ouput variables:

● DIS: Q2, x, y, W, …
● HFS variables: Σ, …
● SIDIS Hadron: p, p

T
, z, ϕ

h
, …

● Jets: z, p
T
, q

T
, …

● Includes boost functions

DETAILS:
https://github.com/c-dilks/sidis-eic/blob/docker-base-jug-xl/doc/kinematics.md
 [to be merged to main branch soon]

https://github.com/c-dilks/sidis-eic/blob/docker-base-jug-xl/doc/kinematics.md

C. Dilks 6

Current jet implementation
in AnalysisDelphes

• Jet clustering using fast jet and Delphes energy flow objects with pT > 0.1 GeV
• EFlowTracks, EFlowPhotons, EFlowNeutralHadrons
• four-momenta from MC particle bank also clustered to get true jets

• Currently, semi-inclusive jets using anti-kT (R=0.8) algorithm clustered, then
used to calculate other variables/fill histograms
• etc.

slide from Connor:

C. Dilks 7

Adage: Directed Acyclic Graph (DAG) that stores:

● Data, in arbitrary multi-dimensional bins and cuts
● 1 “layer” of nodes = 1 variable’s bins or cuts
● Layers are fully connected to adjacent layers
● 1 multi-dimensional bin = 1 full graph path from root node to leaf node

● Stores associated set histograms (Histos, HistosDAG)
● TODO: generalize to store anything

● Algorithms, executable during graph traversal (no nested for loops!)
● Run “payload algorithm” on every bin or on any subset of bins
● Graph layers can be re-ordered (switches inner and outer “loops”)
● Allows for “binning agnostic” code

● Prototype developed within SIDIS-EIC

z1 z2

y1 y2

Q1 Q2 Q3

x1 x2

control subloop
{Q2,x}

root node

leaf node

4D Binning in (z,y,Q2,x)

In practice:
1) Define your bins
2) Define your algorithms
3) Run

Output Data Structures

C. Dilks 8

● SimpleTree – flat TTree, useful for quick tests etc.
● Reconstructed SIDIS variables
● Has been used for SIDIS single-hadron asymmetries
● Straightforward to connect to other analysis libraries and add more variables

● Support for Custom Data Structures and Algorithms
● Existing data structures may not suit our future needs
● Implement custom data structures
● TODO: add plugin support

● Class methods Prepare(), Fill(), Finish() = before all events, for each event, after all events
● Support usage with Adage

Output Data Structures
SimpleTree

C. Dilks 9

How to Add a new Analysis: Macros

Analysis Macro
● Choose AnalysisDelphes, AnalysisDD4hep, AnalysisFun4all
● Configure

● Reconstruction Method
● Final states (single hadron, jets, …)
● Cuts
● Binning Schemes (construct Adage)

● Call Execute()

Post-Processing Macro (if using Adage)
● Define algorithms (lambdas), such as:

● Draw histograms
● Manipulate histograms (statistics, math, ...)
● Common algorithms available in PostProcessor

● Configure Adage graph traversal
● That is, when the algorithms should execute

● Call Execute()

C. Dilks 10

Example coverage plot: η vs. p in (x,Q2) bins, with PID limits

figure from
Connor Pecar

C. Dilks 11

Example benchmark plot: pion z
rec

–z
gen

, from fast and full simulations, in (x,Q2) bins

figure from
Continuous
Integration

C. Dilks 12

Example benchmark plot: y, from fast and full simulations, in pion (p,η) bins

figure from
Continuous
Integration

C. Dilks 13

Executes on every Git commit (pull request):
Compile SIDIS-EIC
Run Delphes → AnalysisDelphes
Stream Full Simulation Output → Analysis DD4hep
Output (artifacts)
● Fast vs. Full simulation comparison plots: coverage, resolution, etc.
● Effects of varying y

min
 cuts

● Add your plots, ROOT files, … (limited to small statistics)

S3 EVGEN
hepmc files

S3 RECO
fullsim root
file URLs

Artifacts:
- Benchmark plots
- Delphes root files
- ….

Continuous Integration (CI) https://github.com/c-dilks/sidis-eic/actions

https://github.com/c-dilks/sidis-eic/actions

C. Dilks 14

Getting Started

Setup (see README.md)
● Use the Singularity or Docker image: based from eicweb/jug_xl

● Includes Delphes, in addition to jug_xl software
● Alternatively, local install (+dependencies)

Follow README.md for documentation

Follow Tutorials for example macros (tutorial/README.md)

Contributions are Welcome

Fork SIDIS-EIC

New branch → write code → pull request

Github Workflow Tutorial:
https://git-scm.com/book/en/v2/GitHub-Contributing-to-a-Project

https://eicweb.phy.anl.gov/containers/eic_container
https://git-scm.com/book/en/v2/GitHub-Contributing-to-a-Project

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

