

EPIC Working Group Conveners Meeting

4 November 2022

Silvia Dalla Torre, Or Hen, <u>Tanja Horn</u>, John Lajoie, Bernd Surrow

Calendar – recent highlights and upcoming events

- ✓ □ October 2022: First simulation campaign started, detector subsystem review etc.
 - ✓ October 18/19: 60% Design Review Magnet
 - October 12-13: Resource Review Board kick-off meeting
 - October 19-21: Detector Advisory Committee meeting
 - ✓ Start of the first phase of the simulation campaign a lot of effort here!
- November 2022++: Validation first simulation campaign, detector subsystem reviews,
 - November 15-16: EIC Generic Detector R&D Meeting
 - December (first two weeks): Calorimeter Review
 - December (before end of CY): Polarimetry Review
 - Incremental Integration/Installation Review
 - o more subsystem reviews (Tracking, PID, Infrastructure, Magnet Incremental Design and Safety)
 - ☐ January 31 February 2023: DOE OPA Status Review
 - ☐ May 2023: first version of pre-TDR October 2023: final version of pre-TDR

First EPIC Simulation Campaign — STARTED!

Dear EPIC Collaborators,

We are happy to announce that the first set of single particle jobs have completed and the output files are available on S3 at the following location:

S3/eictest/EPIC/RECO/22.10.0/

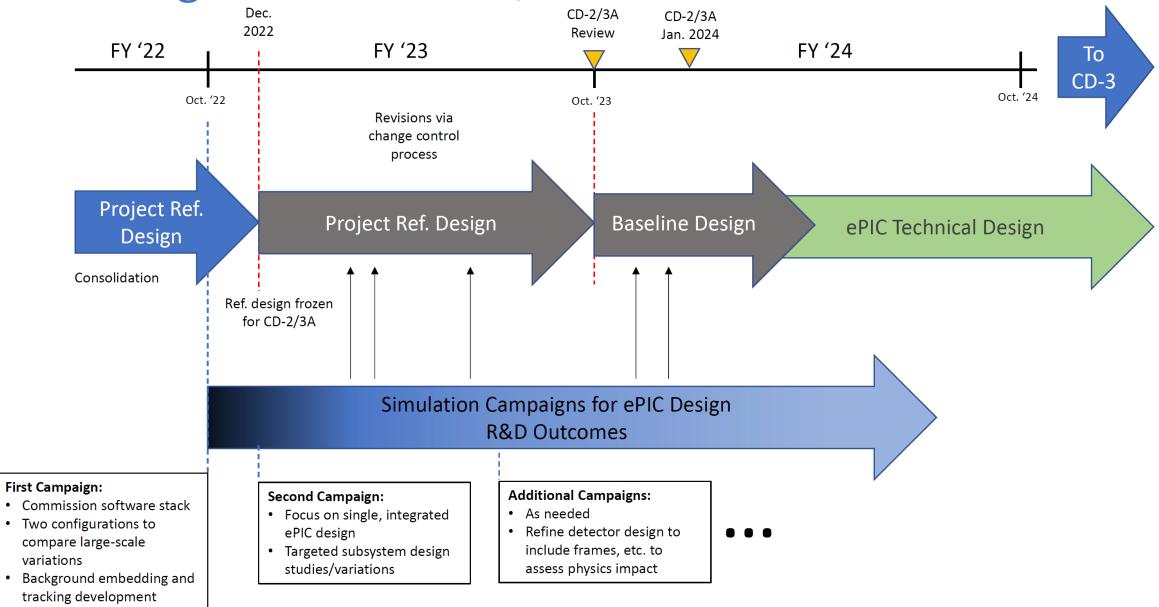
Underneath this bucket are the two detector configurations, and their corresponding files. You can list the files by (e.g.) mc find S3/eictest/EPIC/Reco/22.10.0/ to see what is available.

We note that these files have known limitations, for example with the calorimeter clustering, as discussed in the general meeting last week. However, we encourage the working groups to take a look at these first sets of files and provide feedback on other issues that you come across.

Looking forward to hearing from you,

The SimQA and Computing and Software working groups

□ There are two detector geometries ("arches" and "brycecanyon") - fixed and tagged for simulation runs. You can see the geometry tags in the github repository:

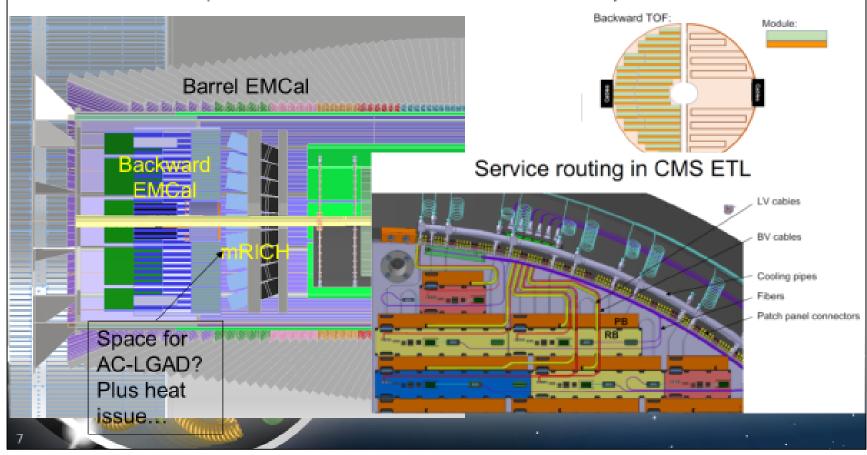

https://github.com/eic/epic

☐ The latest geometry tag is "22.1.0". You can tell the geometry tag for a set of simulation files from the file location in S3.

Action Item for the WGs:

- software liasons with each WG to actively examine the reconstructed output and simulation geometry to identify any remaining issues.
- ➤ At the next SimQA meeting every Det WG is expected to present 1-2 slides based on their examination of the geometry and single particle files.

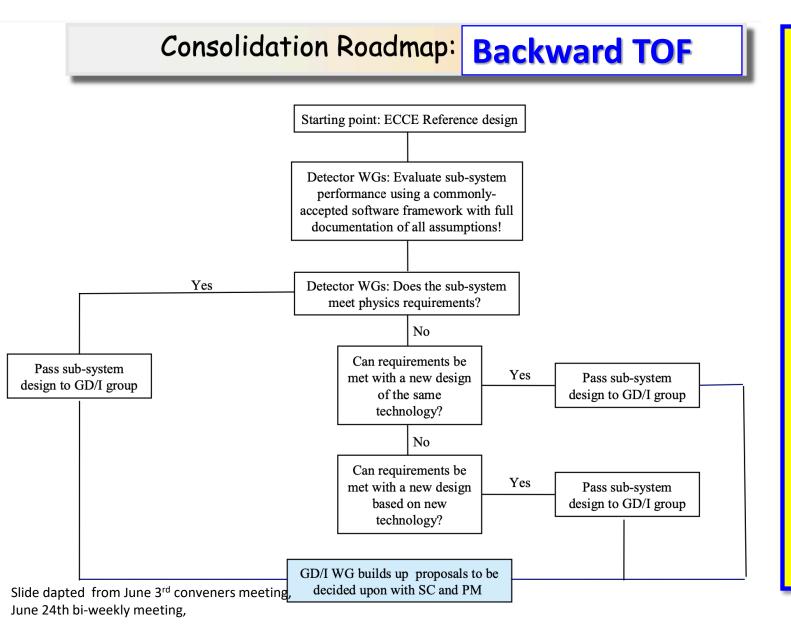
EPIC Design Towards CD2/3A



EPIC Design Towards CD2/3A

- ☐ The EIC Project assumed a "detector-1" reference design based on the YR work for CDR development and to achieve CD-1
 - This was updated after the DPAP process to reflect "detector-1" at that stage this was integrated in the project cost book, and what was used for the FPD-led EIC Project status review.
- ☐ The Project must freeze the ePIC reference design in order to prepare for CD-2/3A, and explicitly for the upcoming January Office of Project Assessment review of the EIC.
 - o The reference design will be determined from our best understanding at this point.
 - This will allow work to continue to an ~60% design completion by CD-2/3A towards a baselined detector
- □ Nevertheless, the ePIC design optimization process will continue and is not expected to be completed by the end of 2022
 - The ePIC design optimization process will proceed through a series of simulation campaigns.
- ☐ The ePIC reference design can be updated but only through the project change control process:
 - The change control process is important changes must be justified by performance, cost and risk!
 - Changes should be the exception, not the rule.
 - Example: changing from SiPM readout to LAPPDs
- ☐ This will result in a unified ePIC Technical Design going into CD-3

Integration Process: Backward Detectors


- Backward EMCal is crucial for EIC, and we rely on it's high-precision performance.
- It has to be in a stable ambient temperature environment (< +/- 1° C)
- Even if material at the front face will not affect performance much, materials further away will and have to be minimized.
- AC-LGAD would provide both material and "a toaster" nearby...

Integration process identifies possible issue with backward detectors TOF

 AC-LGAD impact on backward EMCal performance

Consolidation Reference Design: Backward Detectors

Charge to the GD/I WG

- ➤ In your professional opinion, are the challenges of incorporating an AC-LGAD TOF layer in the backward end cap severe enough to justify replacing it with an alternative solution?
- Alternatively, should the collaboration invest more resources trying to find a way to make it fit without damaging the performance of other detectors, such as the backward EMCal?
- Do you see any fundamental issues in using the RICH photo-sensors and interaction vertex measurements for TOF and/or t0 measurements?

GD/I's Assessment of the Backward ToF

Carlos Munoz Camacho (IJCLab, CNRS/IN2P3), Jin Huang (BNL), Richard Milner (MIT), Joe Osborn (BNL), Silvia Dalla Torre (INFN-Trieste), Thomas Ullrich (BNL)

From GD/I presentation at the 28 October 2022 General EPIC meeting (Link)

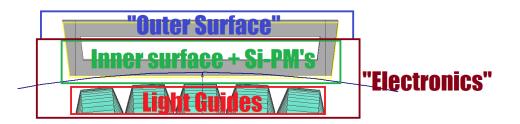
- The physics WGs have identified that the sole purpose of the backwarc TOF is to provide *t0* tagging that matches the precision needed for the TOF measurement in the barrel and forward directions.
- No compelling physics requirements have been identified that would motivate low-p hadron PID in the backward region.
- In recent meetings, multiple challenges related to AC-LGAD as the backward TOF have been identified:
 - Space available for the MAPS-tracking volume
 - o Power dissipation that can compromise the performance of the crystal ECAL
 - The amount of material in front of ECAL.
- Although we encourage design and engineering studies to resolve these concerns, we recommend not to include the backward AC-LGAD TOF as the baseline choice for the backward TOF (but as a risk contingency
- We believe a fast RICH photo-sensor, specifically the LAPPD, provides a better-integrated detector solution for the backward *t0* measurement.

EIC Global Geometry: Recent Updates

Email of 11 October 2022

13 October 2022 Update: Barrel EMCal Inner Surface components (Initiated by Elke Aschenauer)

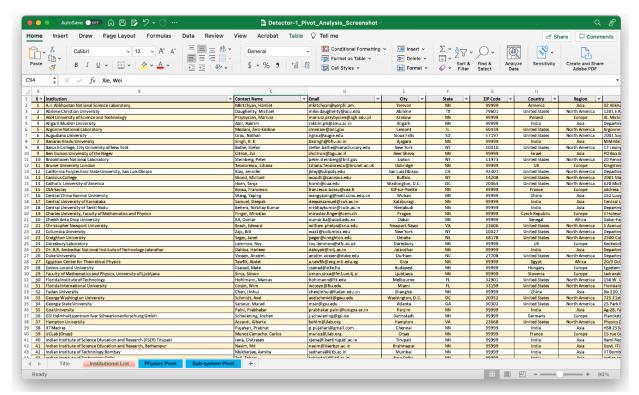
EIC GEOMETRY THU, 13 OCT 2022 16:43:59



Region	Component	Sub-Component	WBS	Length (cm)	Inner Radius (cm)	Outer Radius (cm)	Offset from Center (cm)	Physical Start (cm)	Physical End (cm)	Volume (m ³)	Weight (kg)	Technology
HADRON DIRECTION	Hadron Calorimeter		6.10.06	140	17.5	267	359.6	359.6	499.6	27.65	177,068	FeSc, WSc last segment
END CAP	Electromagnetic Calorimeter		6.10.05	30	14.0	195	329.6	329.6	359.6	3.57	23,048	Pb/Sc
	Service Gap			9			320	320	329			
	Dual RICH		6.10.04	120	15.0	185	180	195	315	11.43	2,123	Aerogel/Gas
		Detector Section		100	15.0	185	215	215	315	10.68		
		Aerogel Section		20	15.0	110	195	195	215	0.75		
	HD Time of Flight/Tracker		6.10.03	15	8	67	180	180	195	0.21	42	AC/LGAD
	Barrel Hadron Calorimeter		6.10.06	639.2		268.2	0	-319.6	319.6	72.22	462,406	FeSc
		HD Section		170	195.3	268.2	150	150	320	18.05		
		Central Section		300	183.3	268.2	0	-150	150	36.13		
		LD Section		170	195.3	268.2	-150	-320	-150	18.05		
	Solenoid Magnet		6.10.07	384	142	177	-10	-202	182	13.47	45,956	Solenoid
		EMCal Outer Support		492.2	132	141		-293.9	198.3	3.80	5,965	Steel
	Barrel EMCal*	EMCal Outer Surface		492.2	130.5	131.5	-45	-293.9	198.3	0.41	1,098	Aluminum
		EMCal Electronics		492.2	120.5	130.5	-45	-293.9	198.3	3.88	7,617	Near eta=0
		Barrel EMcal	6.10.05	492.2	80.5	120.5	-45	-293.9	198.3	12.43	43,613	Sci Glass
		EMCal Inner Surface		492.2	78.55	80.5	-45	-293.9	198.3	0.48		Aluminum
CENTRAL DETECTOR		Offset (Air)		492.2	78.85	80.5	-45	-293.9	198.3	0.41		Air
DETECTOR		Aluminum plate		492.2	78.55	78.85	-45	-293.9	198.3	0.07	198	Aluminum
	Dines			458	65	79	-273	-273	185	1.33	523	Steel
	DIRC Support	Dirc Bar + MPGD Support		458	70	75	-273	-273	185	1.04		
		Readout Support		30	70	105	-273	-273	-303	0.29		
			6.10.04	488	71.5	76.5	-303	-303	185	0.86	661	Fused silica bars
		MPGD Tracker		342	73	75	-197	-197	145	0.32	64	muRWell (plane type)
	Integrated DIRC/MPGD Detector	DIRC Bar Box		458	70	73	-273	-273	185	0.62	430	
		DIRC Readout		30	70	100	-273	-273	-303	0.24	168	
	Barrel Time of Flight/Tracker		6.10.03	270	63	66	0	-120	120	0.33	66	AC/LGAD

Inner Surfaces is the ~3mm Aluminum not ~2cm as listed in the spreadsheet Study of lightguide length needed completed

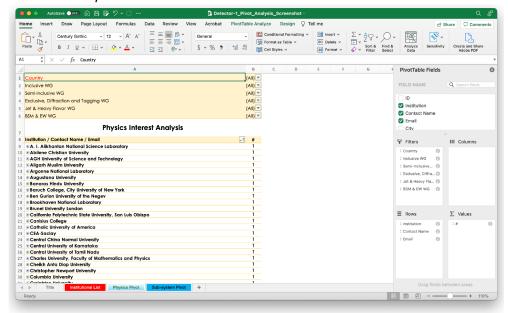
Direct link to 13 Oct 2022 Detector Matrix:

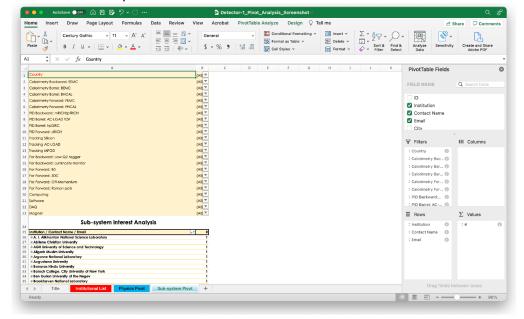

https://eic.jlab.org/Geometry/Detector/Detector-20221013164359.html

Please review and update simulation models as needed

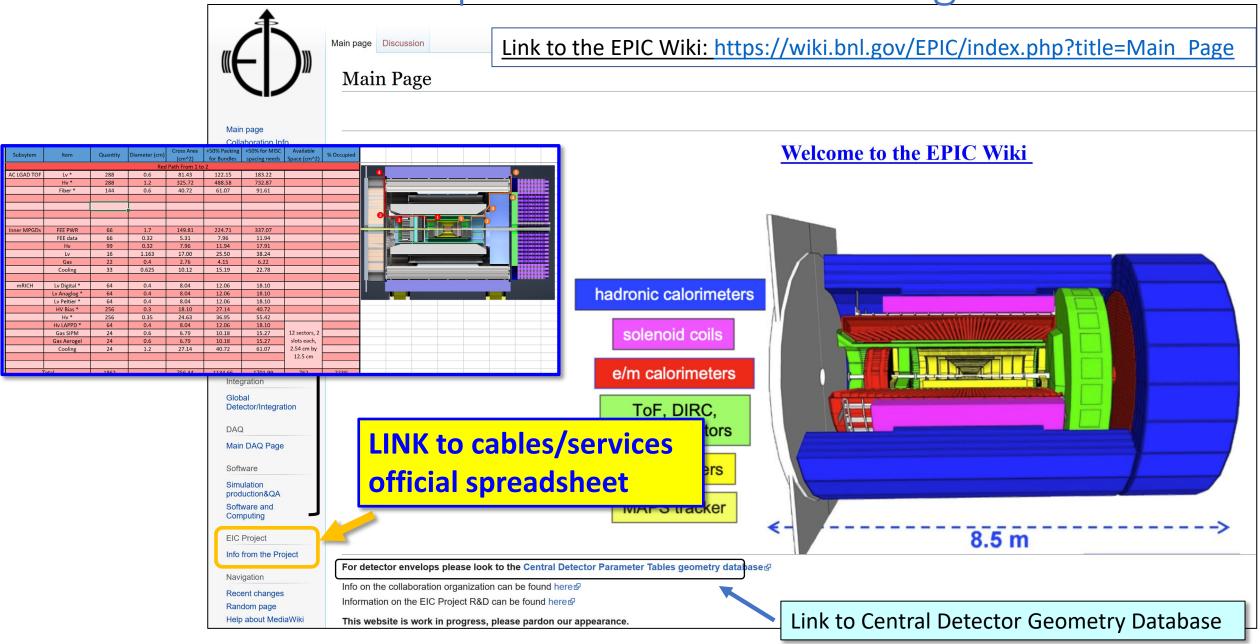
Tools available to help WGs with engaging and organizing workforce

Reminder of Institutional List and Tools


Sheet: Institutions

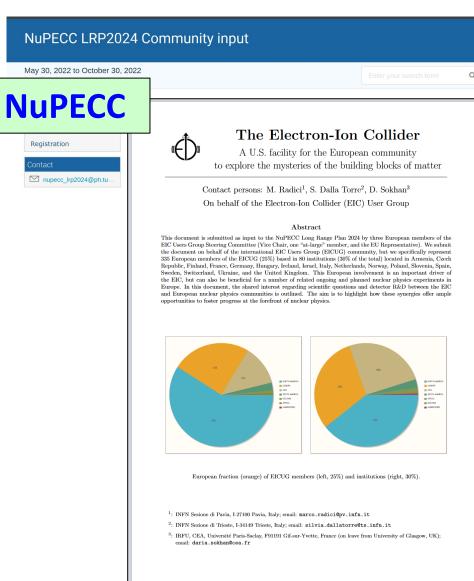

Institutional Tables: https://tuprd-

my.sharepoint.com/:x:/g/personal/tue59914 temple edu/EcGrTZU6 CuFPjXt1foRZY-4Bv5z1In1x2wY9Li3y9YgwnQ?rtime= 1KMEJV 2kg


Sheet: Pivot Physics

Sheet: Pivot Sub-system

Tools available to help WGs with task management


Services and Cables – good progress

Subsystem	Initial Entries
EE HCal	
EE EMCal	
EE Si Disks	
Barrel HCal	
Barrel ECal (SciGlass)	
Barrel Ecal (imaging	
Outer MPGDs	
DIRC	
Barrel AC-LGAD TOF	
Inner MPGDs	_
Silicon Sagitta Detector	_
Silicon Vertex Detector	
HE Silicon Disks	
mRICH	

- ☐ Initial round of entries moving along nicely Si tracker items are being worked on
- ☐ Space estimates: there are two factors of 50%: 1) the maximum packing fraction one can have per safety guidelines, 2) overhead.
 - Some areas look presently oversubscribed but that is exactly why EIC PM needs the info.
 - Also use this info for heating estimates

Subsystem	Initial Entries
EE AC-LGAD TOF	
FE AC-LGAD TOF	
dRICH	
HE EMCAL	
HE HCAL	

Community Long Range Plans

Submitted October 2022

Long Range Plan Update and Discussion

NSAC

NSAC Meeting, Sept 28, 2022

Gail Dodge

Contents

Timeline

- DNP organized town halls already underway
- Working on forming subcommittees

- Closed kickoff meeting Oct. 26 in New Orleans
 - · Agencies will talk to committee
 - · Presentation about budgets
 - Subcommittees
 - Writing assignments & proposed outline of LRP
 - Agenda and timing of resolution meeting
- Writing underway
 - Whitepapers due end of February 2023
 - Late spring/summer: 5 7 day resolution meeting
 - 1st part will include presentations by people who are committee
 - 2nd part will be closed and in-person
 - Editing LRP document
 - October 2023 draft report ready

EIC White Paper Draft in preparation by EICUG Task Force

1 Executive Summary 1.1 The EIC Science Case 1.2 The Electron-Ion Collider and ePIC Detector 1.3 The Case for Two Detectors 1.4 Recommendations and Initiatives 1.5 Recommendations and Initiatives 1.6 Recommendations and Initiatives 1.7 Recommendations and Initiatives 1.8 Recommendations and Initiatives 1.9 Recommendations 1.9 Re	2 2 4 6 6
7 2 The Science Case 8 2.1 Origin of Nucleon Spin 9 2.2 Origin of Nucleon Mass 10 2.3 Imaging the 3D Parton Structure of Nucleons and Nuclei 11 2.3.1 Imaging the Transverse Spatial Distributions of Quarks and Gluons 12 2.3.2 Multi-Dimensional Imaging of the Nucleon in Momentum Space 13 2.4 The Nucleus: A Laboratory for QCD 14 2.4.1 Physics of High Gluon Densities in Nuclei 15 2.4.2 Quarks and Gluons in the Nucleus 16 2.5 Opportunities for Electro-Weak and Beyond the Standard Model Physics 17 3 Synergy and Uniqueness of EIC 18 3.1 Synergy of EIC with Ion Beams and Nuclear Structure 19 3.2 Synergy of eA, pA and AA 20 3.3 Synergy with High-Energy LHC Program and Other Science Programs Worldwide 21 3.4 Synergy with Lattice OCD and Phenomenology	8 8 10 13 14 15 16 16 19 25 27 27 29 30 34
22 4 Detectors	37 37 40 40 40 40 40 41 43 44 46
i	
CONTENTS	1
5 Wider Impact	51 51 53 55 57
References	61

EPIC and NSAC Long Range Plan

23	4	Det	ectors		
24		4.1	Intro	duction - Detector Requirements	
25		4.2	The o	ePIC Detector	
26			4.2.1	Tracking and Vertexing Detector Systems	Francesco Bossu, Laura Gonella, Kondo Gnanvo
27			4.2.2	Particle Identification Detector Systems .	Xiaochun He, Greg Kalicy, Franck Geurts, Zhenyu Ye
28			4.2.3	Calorimeter Detector Systems	Friederike Bock
29			4.2.4	Far-Forward Detector Systems	Alex Jentsch, Michael Murray
30			4.2.5	Far-Backward Detector Systems	Krzysztof piotrzkowski, Nick Zachariou

Thank you for agreeing to contribute to the EIC White Paper. We (the EICUG steering committee) plan to dedicate an entire chapter to the ePIC detector and we would like to include ~2 page long summaries on the following detector packages:

Timeline from **EICUG**

Oct 26: ePIC tracking/Calo/Vertexing sections due -> Renee has not received contributions

Oct 31: email updated draft with ePIC tracking/Calo/Vertexing sections -> not done because of above

Nov. 2: tentative commitment to get drafts from Zhenyu+Franck+Friederike

Nov. 7: last date to receive comments from reviewers

Nov. 14: polished first draft to EICUG

Nov. 17: EICUG Quarterly Meeting

Path Forward

- ☐ Validation, algorithm development and optimizations of the first simulation campaign
 - ➤ Consider to start each Det WG meeting with (a) a one-slide report from the GD/I meeting and (b) a one-slide report from the simulations liaison
 - > Consider the formation of topical groups withing the WG's to attack specific problems.
- ☐ Continue Integration Process
 - > Consider to have at least one of the Det WG conveners attend each GD/I meeting
 - > Space for readout, cables, services please update the spreadsheet on the Wiki: <u>Link</u>
 - > Detector subsystem, i.e. its material, impact the performance of other ones
- ☐ Detector Envelope Reference for the next Simulation Campaigns
 - Check Global Geometry Database and update simulation models as needed: <u>Link to the Geometry Database</u> (use the one with the latest timestamp)

Comp/SW convener changes

Dear ePIC:

Preview of email announcement

ware convener!

a Computing Software Convener!

and So Lawrence has informed us of his desire to step down as a Computing Software Convener.

of you know, David was instrumental in helping develop the convener of effort into the development of the reconstruction putting and Software Convener responsibilities. The resses its sincere gratitude to David for the association of the reconstruction putting and software as available for convener responsibilities. The resses its sincere gratitude to David for the association of the has put into getting ePIC this far.

The recognizes that we are in for your service as computing and stand up a new reconstruction framework and it feel by your day and Software effort short-handed. In consultation with the Computing and the responsibilities as a Computing and Software convener, welcome mas graciously agreed to do so.

We ask ever the in ePIC to join us in both thanking David for his service, and in welcoming Markus in his new role.

Regards, Silvia, Or, Tanja, John and Bernd

Summary

- □ Successful start of the simulation campaign thanks to the Computing/Software and Sim/QA!
 - > Several concerns, e.g., workforce, were noted and included in the resolutions
- ☐ A lot of work remains in front of us most immediate attention needed towards validation, development, and optimization of the first simulation campaign and upcoming technical reviews
- ☐ Thanks to everyone for your efforts! for keeping all of us on track for the near(ish) term goals over the next year:
 - November 2022: validation, development, etc. first simulation campaign EPIC
 - December 2022: finalize reference EPIC detector
 - ➤ May 2023: first version of pre-TDR
 - ➤ October 2023: final version of pre-TDR (what you roughly need here are the answers to the example task lists like in the dRICH example of slide 5)