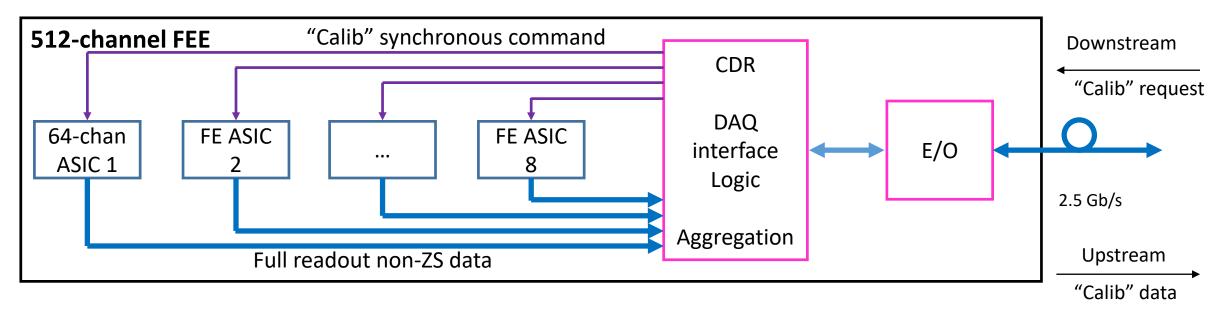


MPGD tracker calibration

a.k.a. pedestal run

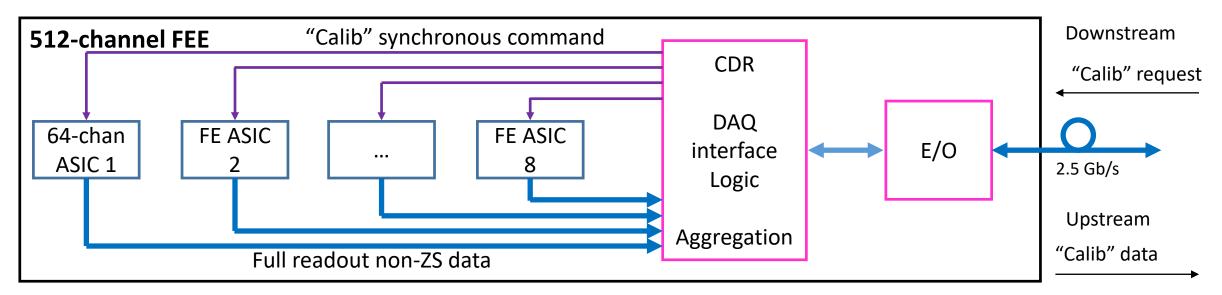
Irakli Mandjavidze

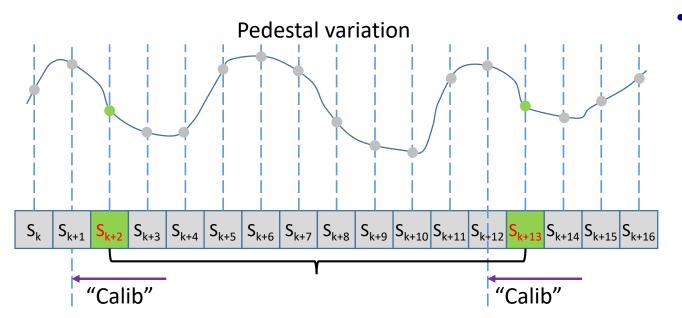
Irfu, CEA Saclay Gif-sur-Yvette, 91191 France


Goal, caution and conclusion

- Asses FEE output bandwidth needed for calibration
 - \rightarrow Do the FEE calibration data influence the choice of the FEE output link bandwidth?
 - As a by product asses FEE and ASIC de-randomization buffer increase due to calibration
- Make some assumptions on
 - \rightarrow FEE and FE ASIC operation
 - \rightarrow Calibration sequence
- Though not definitive, the assumptions give a good idea about the expected calibration data volumes
 - → Typical calibration consists of taking non-ZS data to evaluate detector pedestals, noise and ZS thresholds
- A particular set of parameters is considered
 - \rightarrow The set is deliberately chosen with not favorable parameters
 - e.g. low FEE output link speed, large number of samples
 - \rightarrow An Excel file is shared for verification and for playing with the parameters
- Conclusions: under the posed assumptions the FEE calibration data are small and do not influence the choice of the FEE output link bandwidth

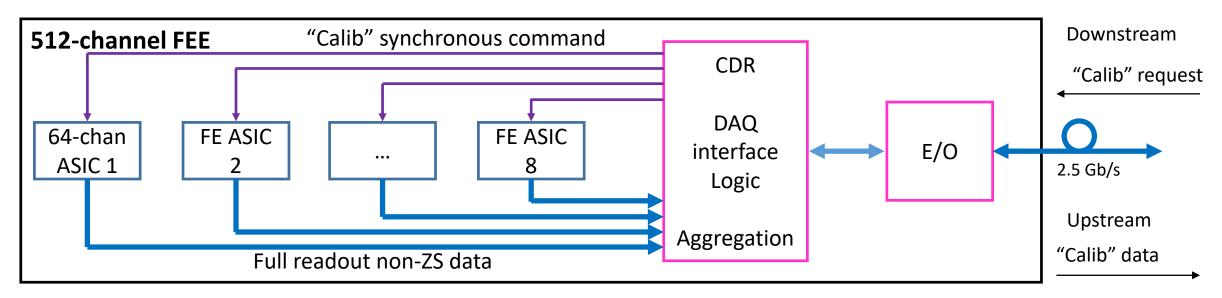
Calibration request and response

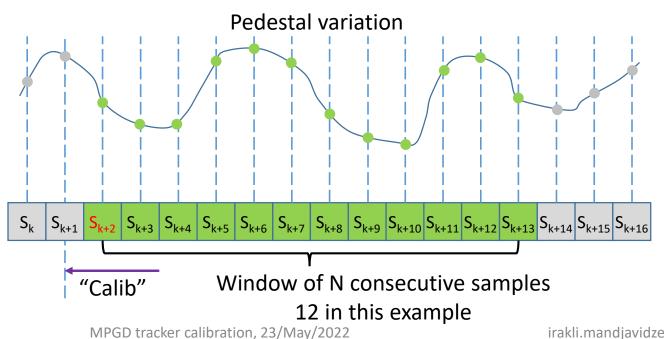

- DAQ sends calibration request to FEE
- FEE conveys calibration request to on-board ASICs
- FEE collects non-ZS calibration data from ASICs
- FEE forms calibration packet and sends it to DAQ



- This sequence repeats programmable number of times to form a complete calibration cycle
- Two calibration types are considered and one of them evaluated

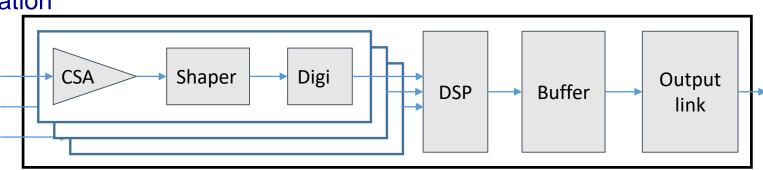
Calibration type: Single "Calib" request – Single Sample readout





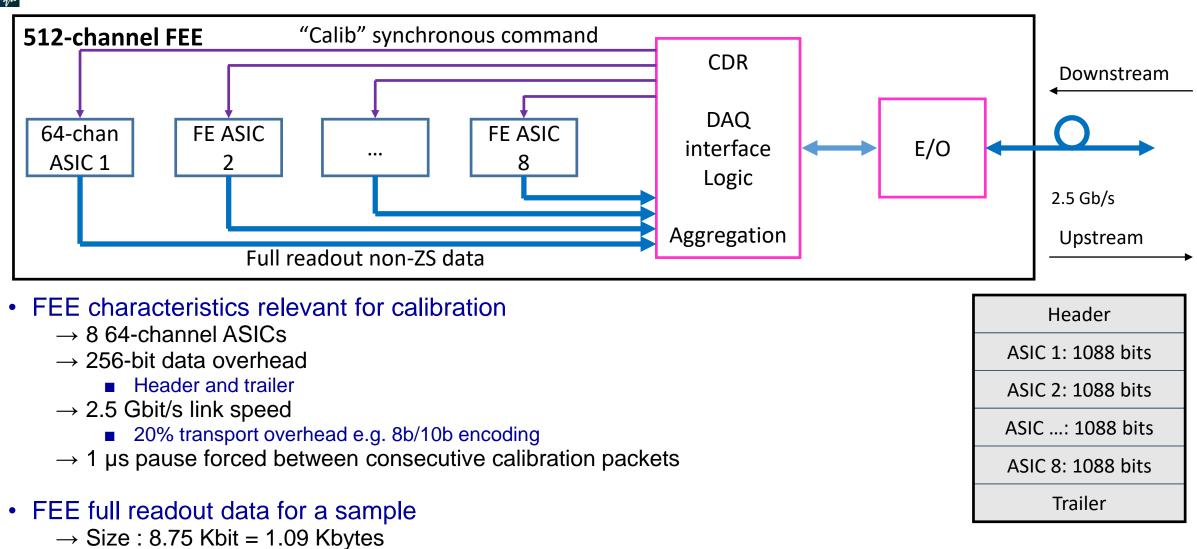
- A "calib" request results to one sample readout
 - \rightarrow Full readout of non-ZS data
 - All channels of all ASICs
 - \rightarrow "Calib" request frequency set by DAQ
 - \rightarrow Consecutive samples cannot be read
 - Unless "Calib" requests pipelined
 - \rightarrow Needs smaller de-randomizer buffers in ASICs
 - Absorb eventual ZS samples awaiting their turn to be sent
 - Determined by ASIC output throughput

Calibration type: Single "Calib" request – Window readout

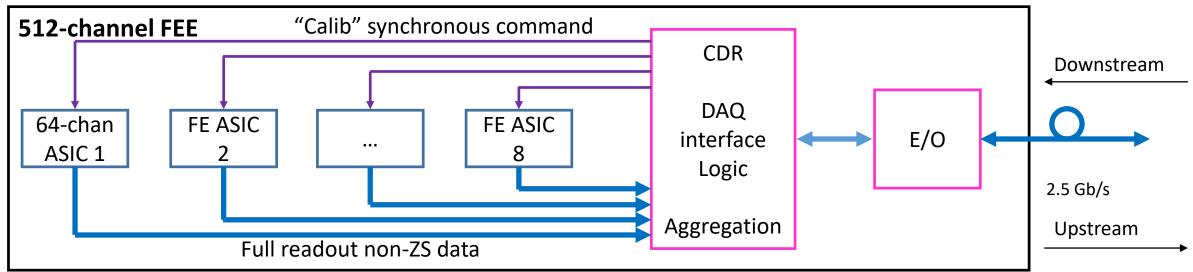

- A "calib" request results in a Window readout
 - \rightarrow N consecutive samples
 - \rightarrow Full readout of non-ZS data
 - All channels of all ASICs
 - \rightarrow Window size programmable
 - Probably same as for ZS readout
 - e.g. able to contain a typical signal shape
 - \rightarrow Needs larger de-randomizer buffers in ASICs
 - Samples pile up awaiting their turn to be sent
 - Determined by ASIC output throughput

64-channel ASIC for MPGD tracker

- ASIC characteristics relevant for calibration
 - \rightarrow 64 channels
 - \rightarrow 50 MSPS sampling frequency
 - \rightarrow 12-bit ADC encoded over 16 bits
 - \rightarrow 64-bit data overhead
 - Header and trailer
 - \rightarrow 1 Gbit/s link speed
- ASIC full readout data for a sample
 - \rightarrow Size: 1 088 bit = 136 bytes
 - 64 channels x 16-bit + 64-bit overhead
 - \rightarrow TX time: 1.088 μs
 - 1 088 bit / 1 Gbit/s
 - 54.4 samples
- ASIC ZS de-randomizing buffer to be augmented by
 - \rightarrow For single sample readout: as many extra samples as possible "calib" requests within 1.088 µs TX time
 - \rightarrow For window readout: 1.088 μs * 50 MSPS = 54.4 samples
 - Per channel: 880 bits
 - ASIC: 64 x 880 = 55 Kbits


MPGD tracker calibration, 23/May/2022

16-bit	OR	32-bit →	
Header		Header	
Chan 1		Chan 2	Chan 1
Chan 2		Chan+1	Chan
Chan		Chan 64	Chan 63
Chan 64		trailler	
trailler			


512-channel FEE

- 8 ASICs x 1088 bit + 256-bit overhead
- \rightarrow TX time : 4.3 μs
 - (8.75 + 20% transport overhead) Kbit / 2.5 Gbit/s

512-channel FEE

• FEE ZS de-randomizing buffer to be augmented by

- \rightarrow For single sample readout: as many extra samples as possible "calib" requests within 4.3 μs "calib" data packet sending time
- \rightarrow For window readout: ~5 sample
 - (4.3 μs + 1 μs) / 1.088 μs
 - (FEE calib data send time + forced pause) / ASIC calib data receive time)
 - Per ASIC: 5.3 Kbit = 680 byte
 - 5 x 1088 bit of ASIC calib sample size
 - FEE: ~44 Kbit = 5.5 Kbyte
 - 5 x 8.75 of FEE calib packet size

Header
ASIC 1: 1088 bits
ASIC 2: 1088 bits
ASIC: 1088 bits
ASIC 8: 1088 bits
Trailer

Recapitulating the hypothesis

- Pedestal run consists of 1000 acquisition of 1 µs readout windows without ZS
 → All channels of a FEE are read and sent to off-detector backend electronics
- A 512-channel FEE is composed of 8 64-channel MPGD front-end ASICs
- The 64-channel front-end ASIC is a sampling chip
 - \rightarrow Sampling rate is 50 GSPS
 - $\rightarrow\,$ Channel ADC has 12 bits, but the channel data are sent as a 16-bit word
 - 12 bit ADC value + 4 bit encoding
 - \rightarrow For each sample all 64 channels are read: 64 x 16-bit
 - $\rightarrow\,$ An ASIC overhead of 64 bits is added to the ASIC channel data
 - ASIC header + ASIC trailer
- For each sample FEE transmits the data of 8 ASICs and adds 256-byte overhead
 - $\rightarrow\,$ FEE header and trailer
 - $\rightarrow~256$ + 8 x (64 + 64 x 16) bits
- FEE upstream link throughput is 2.5 Gbit/s
 - \rightarrow Transport layer overhead is 20%
 - For example, 8b/10b encoding is used: for every 8 bits of user data 10 bits are transmitted
- FEE respects 1 μs pause between two successive calibration packets
- 1 μs Readout window corresponds to 50 samples at 50 GSPS rate
 - $\rightarrow\,$ For each readout window 50 consecutive samples are read

Window-readout calibration sequence

- Assume the following calibration protocol
 - → To send all samples forming a readout window the FEE needs to receive a single "Calib" command over the downstream link
 - Upon reception of the "Calib" command the FEE performs 50 times the following
 - Sends "calib" command to all ASICs
 - Collects "calib" data from all ASICS
 - Forms data packet containing data of all ASICs and its own overhead
 - Sends the packet over the upstream link
 - Observes 1 µs idle time to let backend electronics to do some housekeeping
 - \rightarrow To perform complete calibration cycle the DAQ sends 1000 "Calib" commands to FEE at some pace
 - This results to 50k non-ZS samples (1000 x 50) acquired for each channel

• Questions and answers

- \rightarrow What is the FEE calibration data size? ~53.4 Mbyte
- \rightarrow What is the min calibration time? ~265 ms
- \rightarrow If DAQ sends "Calib" commands at 100 Hz pace
 - What will be calibration cycle duration? 10 secs
 - What will be occupancy of the 2.5 Gbit/s upstream link due to the calibration data : 2%
- Conclusions: under these assumptions the FEE calibration data are small and do not influence the choice of the FEE output link bandwidth