Tracking WG Status Update

F. Bossù, K. Gnanvo, L. Gonella, X. Li
EIC Detector 1 Global Detector / Integration WG
06 June 2022

Meetings organisation & Information

- The Tracking WG meetings will take place bi-weekly on Thursday at 11am EDT.
- Indico category: https://indico.bnl.gov/category/404/
- Mailing list: https://lists.bnl.gov/mailman/listinfo/eic-projdet-tracking-l
- Please subscribe if you have not done so yet.
- Coordination with other WGs Contact liaison are being identified for
 - DAQ/Electronics/Readout: Kondo (MPGD), Jo (TBC, Si)
 - Computing & Software/Simulation Production & QA WG: Matt, Nicholas
 - PID: Laura (AC-LGAD), more TBC

EIC detector 1 tracking detector layout

Si vertex & tracker:

- Vertex layers:
 - 3 layers
- Barrel tracker:
 - 2 sagitta layers 0.05% X0 per layer → 0.55% X0 / layer
 - 1 AC-LGAD layer (between DIRC & uRWELL layer
- Electron end cap tracker:
 - 4 MAPS disks
 - 1 AC-LGAD layer behind mRICH disks
- Hadron end cap tracker:
 - 5 MAPS disks
 - AC-LGAD layer in front of dRICH

MPGD layers:

- 2 Tracking layers:
 - 2 Cylindrical / curve tiles layers between the Si sagitta and hpDIRC:
 - complement the Si trackers at larger radius for tracking performance
- ❖ 3rd layers → hpDIRC MPGD support tracker
 - Impact point for DIRC ring seeding → Tracking / PID integration
- Hadron end cap layer: dRICH MPGD support tracker?
 - Impact point & for dRICH ring seeding → Tracking / PID integration

R [cm]	100 90 80	ECCE Simulation,	tracking and PID de	etectors, inactive compo	nents of trackers $\eta = 0$ $\mu Rwell$	are hidden to high	ntlight acceptance η=1		
	70 60 50 40 30 20	Bwd AC-LGAD	nRICH	Bwd Si-disk	DIRC Barrel AC μRwells Si-sagitta		Fwd Si-disk	Fwd AC-LG	η=2
	⁰ 200	-150	-100	-50	0	50	100 PGD behind dRICH	150	200 z [cm]

Region	Layer index	technology	radius	minimum z	maximum z	pixel pitch
barrel	1	MAPS	3.3 cm	-13.5 cm	13.5 cm	10 μm
÷	2	:	4.35 cm	-13.5 cm	13.5 cm	10 μm
:	3	:	5.4 cm	-13.5 cm	13.5 cm	10 μm
:	4	:	21.0 cm	-27 cm	27 cm	10 μm
÷	5	:	22.68 cm	-30 cm	30 cm	10 μm
Region	Layer index	technology	radius	minimum z	maximum z	strip pitch
barrel	1	μ RWELL	33.14 cm	-40 cm	40 cm	400 μm
:	2	:	51 cm	-106 cm	106 cm	400 μm
:	3	:	77.0 cm	-197 cm	145 cm	400 μm
Region	Disk index	technology	z location	inner radius	outer radius	pixel pitch
e-endcap	1	MAPS	-25 cm	3.5 cm	18.5 cm	10 μm
÷	2	:	-52 cm	3.5 cm	36.5 cm	10 μm
:	3	:	-79 cm	4.5 cm	40.5 cm	10 μm
:	4	:	-106 cm	5.5 cm	41.5 cm	10 μm
Region	Disk index	technology	z location	inner radius	outer radius	pixel pitch
h-endcap	1	MAPS	25 cm	3.5 cm	18.5 cm	10 μm
:	2	:	49 cm	3.5 cm	36.5 cm	10 μm
:	3		73 cm	4.5 cm	40.5 cm	10 μm
:	4	:	106 cm	5.5 cm	41.5 cm	10 μm
:	5	:	125 cm	7.5 cm	43.5 cm	10 μm

Specific charge for Tracking WG

Simulations:

- Break down of simulation tasks in https://docs.google.com/spreadsheets/d/1Jp1-V7MavZFejn2SG185YarbMlpGCByGfF7yz4Y-Azc/edit?usp=sharing
- Technology reviews (back up slides)
 - Identify risks & fallback solutions for each technology
 - Establish the timelines to CD4
 - Close coordination with the detector consortia (EIC-SC, eRD108)
- EIC Tracking Detector configuration (back up slides)
 - By July EICUG → the baseline configuration "aka advanced conceptual design" of the tracking detector is established
 - We know which technology goes where and basic performance expectation
- Requirements inputs from the physics WGs
 - · List of key tracking requirements such as momentum resolution, vertex and projection spatial resolutions.

Considerations on the Si vertex and tracker

Vertex layers

The radii need to be adjusted as 5 mm clearance from the beam pipe are needed because of beam pipe backout.

Tracking layers

- The material assumed in the ECCE proposal is 0.05%X/X0 per barrel layer This need to be updated to 0.55% X/X0 that is what is suggested by the EIC SC.
- Also, check the impact on performance by switching the sagitta middle layers with the ATHENA design (i.e. smaller radii).

Disks

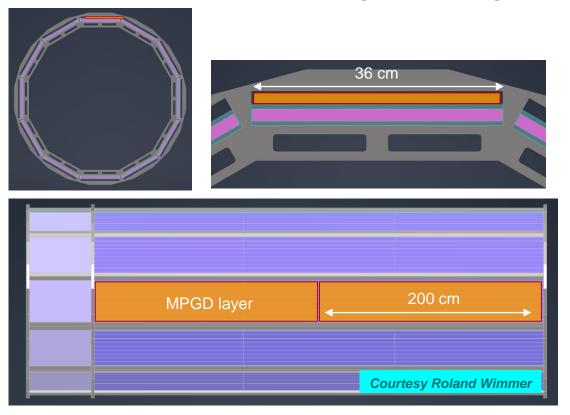
- The last disk on both side in the ECCE design is currently floating and not supported. Service cone needs updating to make the required support connections.
- Hits per track as function of rapidity and p_T/momentum
 - The average number of hits per track in the electron going direction is 3 hits on average.
 - Needs further verification in simulations.

Tracking Integration with the AC-LGAD ToF

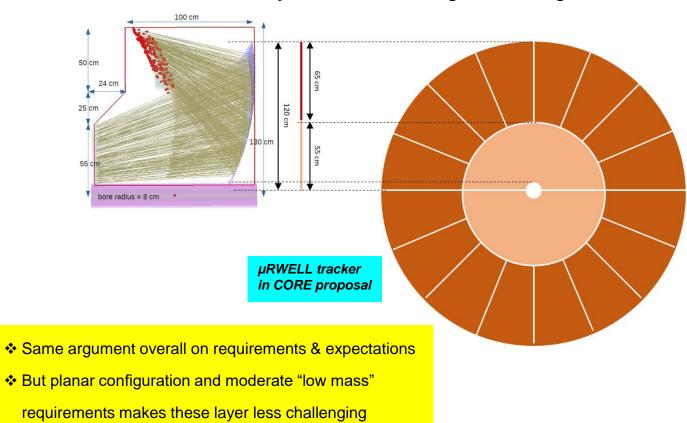
- We plan to have joint meetings with the AC-LGAD ToF WG and here is the list of questions about the detector integration.
 - For the tracking and ToF integration, any space limitations in x-y-z for the proposed ToF in the barrel, hadron-endcap and electron-endcap regions? → This is needed for the tracking geometry optimization in parallel with the ToF geometry updates.
 - We would like to get the latest hit spatial resolution of the ToF layer / disk into simulation and get the values implemented in simulation → this will help us evaluate the integrated tracking performance including the ToF layer/disk.
 - Any specific tracking performance or matching or projection requirements from the ToF WG?

Considerations on the Barrel MPGD inner layers

Requirements & expectations from YR & various detector proposals:


- ❖ Low mass < 0.5% X0 per layer for all barrel MPGD layers
- ❖ Spatial resolution (50 μm − 100 μm) for all barrel MPGD layers in both phi and z directions
- ❖ Full coverage in eta and phi → no dead area
 - ❖ We will have to revisit some of these expectations and relax the constraints where possible
 - This should come from tracking simulation results and physics requirements
 - ❖ The technologies are known (micromegas or µRWELL) but actual design strongly depends on requirements

Challenges → No showstopper


- **❖ Large area & low mass →** < 0.5% X0 will be very challenging
- ❖ Low mass & 2D readout → at this level of low mass, material budget of readout is a major contribution to the overall thickness regardless the MPGD technology
- ❖ Spatial resolution → degradation of resolution with incoming track angle
 - Main concern is the spatial resolution requirements at large angle in z direction
 - 50 μm−100 μm will be extremely challenging (quasi impossible with MPGDs) at large angle → more on following slides
 - excellent spatial resolution (50 μm–100 μm) uniform across the range in phi direction

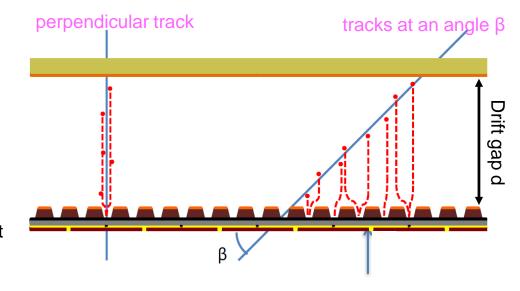
Considerations on the MPGD support layers for PID

MPGD layer behind hpDIRC: Ring reco. seeding

MPGD layer behind dRICH: Ring reco. seeding

Requirements & expectations from YR & various detector proposals:

- ❖ Low mass (< 0.5% X0 / layer) is really not justified for this layers → 1% to 2% X0 MPGD layer right in front of EM Cal. is not an issue
- ❖ But space limitation for layer behind hpDIRC → 2 cm thick box space allocated for MPGD layer
- ❖ Spatial resolution (50 μm − 100 μm) for all barrel MPGD layers in both phi and z directions (or R for the disc layer behind dRICH
- ❖ Spatial resolution → 50 μm-100 μm will be extremely challenging at large angle in R direction → more on that on following slides

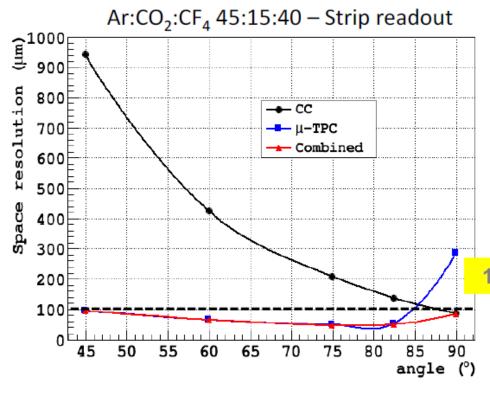

Spatial resolution: issues to address

Nominal position resolution:

- Determined with hits from tracks perpendicular to the detector plane.
- Depends on technologies, anode readout structures & pitch (strips, pads, ZZ...), gas properties
- This is what we usually refer to when talking about the position resolution performances of MPGD detectors.
- Ranging between 50 μm 100 μm for MPGD trackers (3 mm drift gap, & various readout technologies) when position is calculated using center of gravity (COG) / charge centroid (CC) method
- Still valid if track angle w.r.t detector plane axis is small (< 10°)

Incoming track at large angle

- Ionization in drift volume generates signal on too many strips on the anode readout
- Number of strips with hits → increases linearly drift gap d
- COG no longer valid way, spatial resolution $\sim d/\sqrt{12} \Rightarrow$ determined by drift gap
- Two approaches to recover spatial resolution performance under consideration
 - Micro-TPC (µTPC) → increasing the drift gap (from 3 mm to ~ 1 2 cm)
 - Thin gap MPGDs → reducing the drift gap (from 3 mm to 1 mm or less)
- We need to integrate this into simulation for tracking performance


Solutions for improving resolution: MPGD-µTPC

* advantage:

- Technique has been studied by several groups (i.e B. Azmoun @ BNL)
- Combine COG method for small angle with µTPC for large angle
- Provide track lets track reconstruction with single detector layer
- ~100 µm spatial resolution across a wide range of angle?
- Can be a very good option for barrel cylindrical MPGD trackers

Cons / challenges

- Requirement on readout electronics more stringent, same situation as for GEM-TRD with eRD122
- Still, it is not clear if MPGD in µTPC mode an provide the angular resolution required for → performance need to be demonstrated
- Performances in B field (Lorentz angle) need to be evaluated
- Multi-track performances need to be evaluated
- Is μTPC compatible with high performance & low channel count readout under development with eRD108?

Courtesy M. Poli Lener, CePC Workshop, Roma, 05/25/2018 https://agenda.infn.it/event/14816/contributions/26754/attachments/191 09/21615/CepC MPL Roma 2018.pdf

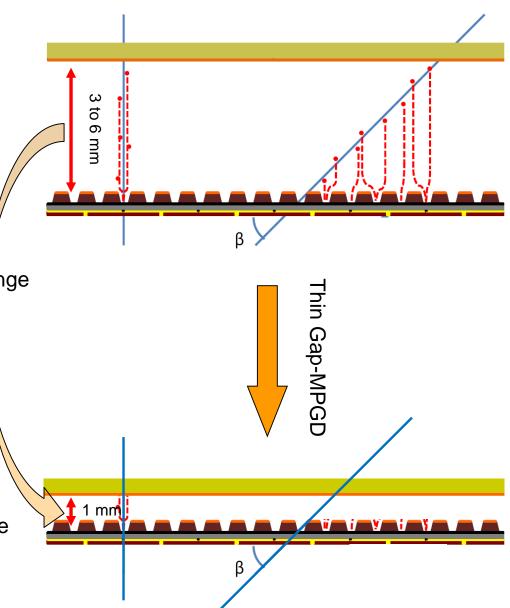
Solutions for improving resolution: Thin Gap MPGD

idea:

Narrow drift gap from couples of mm (3 to 6) to sub mm level

 Spatial resolution still angle dependent but expected to be reasonable at large angle → < 150 um for 30 ° tracks with 1 mm drift gap

* advantages:


Combine COG method for small angle with µTPC for large angle

Twin TG-MPGD configuration → Good angular resolution in large eta range

- Performance improvement in large B field → to be demonstrated
- Should work with capacitive-sharing readout structures

Cons / challenges

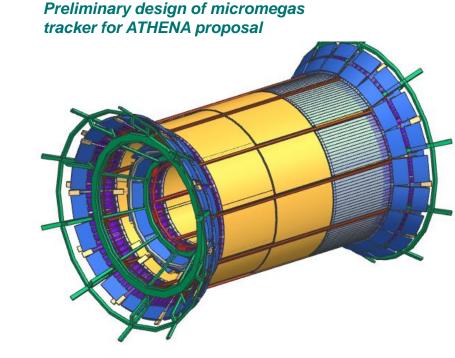
- Will require high density gas like Xe → cost
- Needs extensive R&D to fully validate the idea
- Not be ideal for low mass Cyl. layer → gap uniformity might require some rigid support

"Consensus" on MPGD tracking resolution

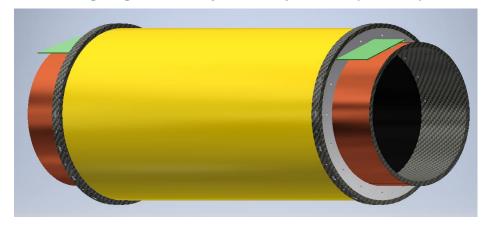
❖ Resolution parameters input for tracking simulation → Our starting point

- In phi direction → 50 μm (optimistic scenario), 75 μm(reasonable scenario), 100 μm (pessimistic scenario)
- In z (for barrel trackers) or R (for end cap disks) → Parameterization of spatial resolution
 - 50 μm (75, 100 μm) @ 0° to 500 μm @ 45° for standard gap (~3 mm) MPGDs
 - 50 μm (100 μm) @ 0° to 150 μm @ 45° for thin gap (1 mm) MPGDs

Impact of B field on resolution:


- We have not yet discussed in detail this aspect within eRD108
- We will start soon and be able to provide input parameters to simulation
- **♦ Short term** → Beam test in Hall D @ JLab for resolution studies:
 - Setup a beam test in Hall D @ JLab this fall to study (several eRD108 institutions to contribute)
 - Study resolution vs. track angle with standard gap μRWELL and GEM prototypes
 - Proof of principle of Thin Gap MPGD with GEM and μRWELL → efficiency with Xe mixture, resolution vs track angle)

Back up slides


Barrel MPGD trackers: Cylindrical design

Requirements & expectations from YR & various detector proposals:

- ❖ Low mass < 0.5% X0 / layer for all barrel MPGD layers</p>
- ❖ Spatial resolution (50 μm − 100 μm) for all barrel MPGD layers in both phi and z directions
- ❖ Full coverage in eta and phi → no dead area
 - ❖ We will have to revisit some of these expectations and relax the constraints where we can
 - This should come from tracking simulation results and "updated" physics requirements
 - ❖ The technologies are known (micromegas or µRWELL)
 - Actual design strongly depends on requirements

Ongoing R&D for cylindrical µRWELL (eRD108)

Challenges:

- **❖ Large area & low mass →** < 0.5% X0 will be very challenging
- ❖ Low mass & 2D readout → at this level of low mass, material budget of readout is a major contribution to the overall thickness regardless the MPGD technology
- ❖ Spatial resolution → degradation of resolution with incoming track angle
 - Main concern is the spatial resolution requirements at large angle in z direction
 - 50 µm-100 µm will be extremely challenging at → more on following slides
 - excellent spatial resolution (50 μm–100 μm) uniform across the range in phi direction

EIC detector 1: MPGD technologies - Micromegas

Technology

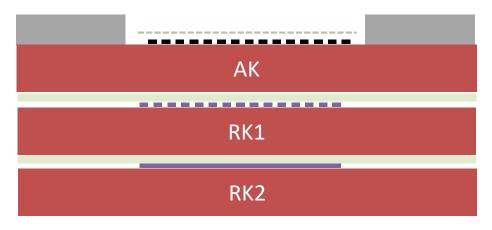
- Leading institutions in eRD108 and Tracking WG: CEA Saclay, BNL, Yale, Vanderbilt U.
- Mature technology (CLAS12 MVT, ATLAS Muon chambers, T2K TPC readout ...)
- Planar and tiles modules for cylindrical trackers

CLAS12 Micromegas Vertex Tracker (MVT)

- Compact & light-weight (~0.4% X0 / layer) cylindrical tracker in a B=5T solenoid, total active area ~4m²
- 1D readout per tile (either phi or z coord)
- Taking data since 2017

EIC needs:

- Simplify assembly of the curved tiles: one single tile module size with a fixed bending radius
 - Same module will cover different barrel layer radii
 - overlap tiles for full acceptance (no dead area gaps)
- 2D readout with nominal resolutions 50 100 µm in both directions & low channel count


eRD108 R&D efforts

- FY22:
 - Optimization of the 2D readout for low number of channels on small prototypes
 - CAD design of the full scale prototype
- FY23:
 - Build a full scale prototype of a Micromegas tile (50x70cm²) with the chosen 2D readout

CLAS12 MVT open for maintenance

R&D on 2D Readout for Micromegas

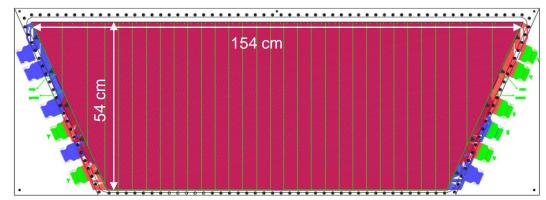
EIC detector 1: MPGD technologies - µRWELL

Technology:

- Leading institutions in eRD108 and Tracking WG: BNL, Florida Tech, JLab, Temple U, UVa.
- More recent technology → never deployed in an HEP or NP experiment yet
 - Simpler fabrication, low cost, flexibility, robustness
- Planar and tiles modules for cylindrical trackers, full cylindrical module for smaller radius possible

CLAS12 High Luminosity Upgrade Forward Tracker: Large-area µRWELL prototype:

- Large-area (150 cm x 50 cm) & light-weight (0.7% X0)
- Prototype completion by end 2022 and in test in Hall B in 2023
- A lot to learn from the test this prototype in early 2023


EIC detector 1 needs:

- Cylindrical tracking layers (full cylinder for most inner barrel layer & modular tiles option ala Micromegas all under consideration
- Large planar module (200 cm x 34 cm)) capability for DIRC MPGD layer
- 2D readout with **nominal resolutions 50 100 μm** in both directions & low channel count

Ongoing R&D efforts with eRD108:

- FY22:
 - Develop small radius (2 cm diam) cylindrical µRWELL prototype
 - Develop 2D readout for low number of channels on small prototypes
- FY23:
 - Prototype tests in beam → FNAL Summer 2023 (contingent R&D funding continuation)
 - Explore options optimization of track angle dependence of the spatial resolution

Gerber view of CLAS12 High-Lumi FT μRWELL prototype

Cylindrical µRWELL: mechanical mockup

