

Dual Calorimetry and 6-D Tracking with LArTPC for Physics Discovery

PI: Chao Zhang (PO), Bo Yu (IO)

Other Investigators: Shanshan Gao (PO), Xin Qian (PO), Hucheng Chen (PO), Steve Kettell (PO), Sergio Rescia (IO), Thomas Tsang (IO), Veljko Radeka (IO)

FY2023 NPP LDRD Type A Proposal

Proposal title: Dual Calorimetry and 6-D Tracking with LArTPC for Physics Discovery

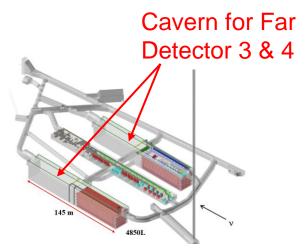
Primary Investigator: Chao Zhang (PO), Bo Yu (IO)

Other Investigators: Shanshan Gao (PO), Xin Qian (PO), Hucheng Chen (PO), Steve Kettell (PO), Sergio Rescia (IO), Thomas Tsang (IO), Veljko Radeka (IO)

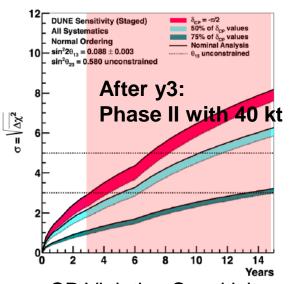
Indicate if this is a cross-directorate proposal. Yes _X__ No___

If yes, identify other directorates/organizations: IO

Program: HEP

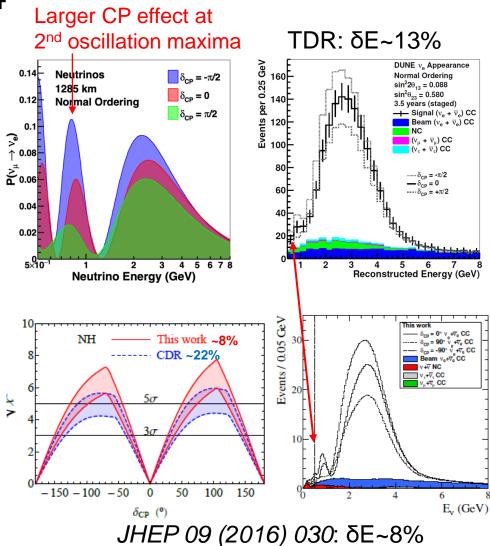

Proposal Term: 3 years From: 10/2022 To: 9/2025

Total funding per year in FY23, FY24 and FY25: \$500K/y

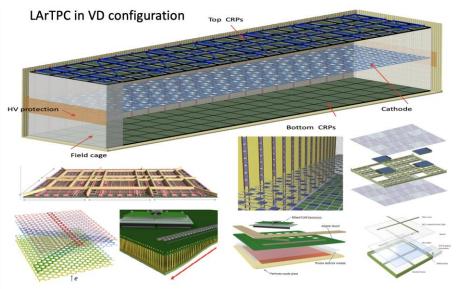


Motivation: DUNE Phase-II FD3&4

- 2014 P5 goals for DUNE:
 - Discover leptonic CP-violation at 5σ for >50% of δ_{CP} values
 - v mass ordering, PMNS mixing matrix unitary test (θ_{23} , θ_{13}), proton decay, supernova v, etc.
- Phase I: two 10-kt LArTPC far detectors
 - FD1: horizontal drift (large BNL contribution)
 - FD2: vertical drift (BNL-led project)
- Phase II: two more 10-kt FDs
 - Required to fully reach original P5 goal
 - Upcoming SNOWMASS process is crucial to endorse this vision of full scope of DUNE in the updated P5
 - Opportunities to improve technology and reduce cost
 - Position BNL for leadership of FD3&4



DUNE Far Site



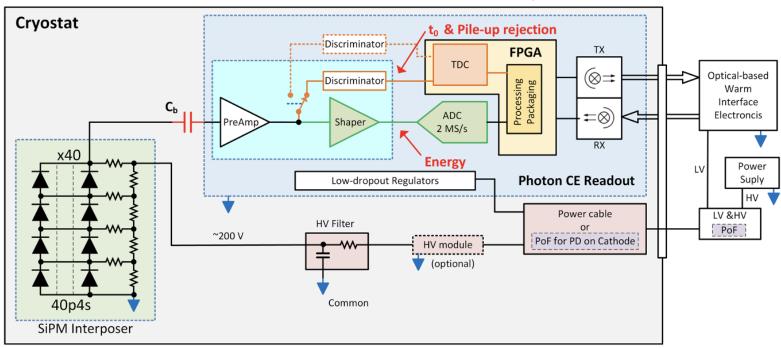
Improve neutrino energy resolution with DUNE FD3&4

- Improve v_e energy resolution from ~13% (TDR) to <8% will have a huge implication
 - Significant improvement of 5σ coverage of δ_{CP} phase space and the resolution of δ_{CP} (<10°)
 - Bigger gain than PIP III 3MW beam (PRD 103:116003, 2021)
- Proposed methods to improve neutrino energy resolution
 - Reduce e⁻ recombination dispersion: dual calorimetry using both charge and light (anti-correlation)
 - Improve hadronic energy resolution: 6-D tracking (3-D spacial trajectory, time, dQ/dx, and dL/dx) to achieve better PID
- Other benefits from the proposed work
 - Significantly improve proton decay $p \to K^+ \bar{\nu}$ detection efficiency (TDR 30% \to 90%)
 - Much more capable low energy physics program (supernova v, solar v, etc.)

Dual Calorimetry: Improving Light Collection and Charge Resolution

	200		٠
4π	photon	detector	configuration

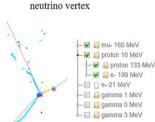
Experiment	PD for each	# of Face	Face Coverage	Surface
	TPC			Coverage
MicroBooNE	8-inch PMT	1	4.3%	~0.9%
ICARUS	8-inch PMT (cathode half transparent)	1	5.1%	~1.6%
SBND	8-inch PMT + X-ARAPUCA, (reflector)	1	16.5%	~4.4%
DUNE-HD	X-ARAPUCA	1	8.4%	~3%
DUNE-VD	X-ARAPUCA	3 (cathode and two long walls)	14.8% cathode, 7.4% long walls * 2	~5%
Proposed based on VD concept	X-ARAPUCA, (reflector)	6	30% long walls, 30% short walls, 25-30% cathode, 1% anode,	~25%


- R&D to reach 25% surface 4π coverage of photon detectors: x8 larger than FD1 (x5 larger than FD2)
 - bottleneck: power and data throughput of PD electronics readout
- R&D of "wavy" PCB anode plane to resolve topological ambiguities with projective charge readout

Wavy PCB anode plane

R&D: Evolving Cold Electronics for PD Readout

Proposed PD readout design with BNL cold electronics (LArASIC)

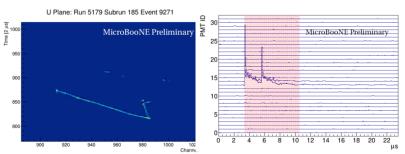


- Amplified SiPM signal split into two paths for digitization in cold:
 - energy path: 2 MHz sampling waveform after shaping, O(10) ns timing resolution
 - time path: discriminated signal with TDC, O(1) ns timing resolution
 - optical-based warm interface electronics to further reduce noise and cost (potential application for charge readout too)
- A factor of 20 reduction in power consumption and data throughput compared with FD2 reference design
 - Enable significantly more channels with better performance and lower cost

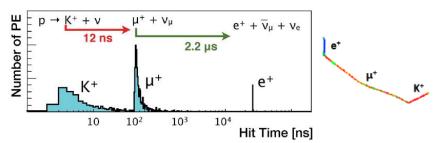
6-D Tracking Enabled

- (a) Selected neutrino activity
- (b) Track/Shower separation (c) Particle-level (d) 3D dQ/dx displayed with PID capability

10 cm



(e) Particle flow


starting from

- For each particle sub-cluster, reconstruct:
 - In traditional LArTPC: trajectory (3D) + dQ/dx (charge per unit length)
 - This proposal: + time + dL/dx (light per unit length)
- Will enable:
 - Identification of decay products (μ[±], K[±])
 - Identification of neutrons through TOF
 - Separation of low-E neutrons from y's
 - ✓ Improved energy resolution through better PID of final state particles
- Proposed algorithm development:
 - Based on current BNL-led Wire-Cell software reconstruction
 - Incorporate charge & light information into a holistic pattern recognition and 6-D track fitting framework
 - Study the improved sensitivity and new physics opportunities enabled by this technology

Traditional particle track reconstruction flow (example from Wire-Cell reconstruction in MicroBooNE)

Identification of Michel electron using charge and light signal (example from MicroBooNE)

An example of proton decay identification

Summary I

- Proposed work in this LDRD
 - 1. Develop an economical solution of low-power and highly-multiplexed cold electronic readout for photon detectors with excellent energy and timing resolution, enabling 4π light readout with >25% surface coverage.
 - Develop and test a novel wavy PCB anode plane design to resolve topological ambiguities with projective charge readout.
 - Algorithm development and physics study to achieve dual calorimetry and 6-D tracking reconstruction with improved energy resolution and particle identification capabilities.
- Estimated total effort
 - Post-doc: 2.0 FTE
 - Scientific staff: 0.5 FTE
 - Engineers & Technicians: 0.2 FTE

Summary II

Intellectual merit

 Will significantly improve DUNE's energy resolution and PID capability for Phase II FD 3&4. These improvements are crucial toward achieving the scientific goals of DUNE and enhance its discovery potential.

Return on Investment

- Will position BNL for leading roles in DUNE FD3&4 (>\$100M) for the next decades, including project management, cold electronics, photon detector, and physics analysis.
- Excellent platform to build future ECA, Al/ML, SciDAC, and other DOE proposals

Broader impacts

 Will continue to maintain and advance BNL's international leadership in LArTPC design, cold electronics development, photon detector R&D, algorithm development, and physics analysis in neutrino and other HEP experiments.

Backup Slides

