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The U.S. Department of Energy’s Argonne National Laboratory delivers world-class 
research, technologies, and new knowledge that aim to make an impact — from the 
atomic to the human to the global scale.
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About Argonne

Argonne is a multidisciplinary science and engineering 
research center located outside Chicago.

• Born out of the University of Chicago’s work on the 
Manhattan Project in the 1940s.

• Managed by UChicago Argonne, LLC, for the U.S. 
Department of Energy’s Office of Science.

• Works with universities, industry, and other national 
labs on questions and experiments too large for any 
one institution to do by itself.
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Our one-of-a-kind facilities enable science from the 
nanoscale to the exascale
•  

Argonne 
Tandem Linear 
Accelerator 
System

Advanced 
Photon Source

Argonne 
Leadership 
Computing 
Facility

Center for 
Nanoscale 
Materials

Atmospheric 
Radiation 
Measurement – The 
Southern Great 
Plains

Argonne’s five flagship facilities support one of the largest user 
communities in the U.S. Department of Energy complex.
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DOE SC
Advanced Scientific 
Computing Research 
User Facilities 

The Advanced Scientific Computing 
Research (ASCR) program leads the 
nation and the world in 
supercomputing, high-end 
computational science, and advanced 
networking for science.

ALCF and OLCF make up the
DOE Leadership Computing Facility

Argonne 
Leadership 
Computing

Facility
(ALCF)

Oak Ridge 
Leadership 
Computing

Facility
(OLCF)

National Energy 
Research Scientific 
Computing Center 

(NERSC)

Energy Sciences 
Network (ESnet)

Argonne Leadership Computing Facility5
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DOE Leadership 
Computing Facility
• Established in 2004 as a collaborative, multi-lab 

initiative funded by DOE’s Advanced Scientific 
Computing Research program

• Operates as one facility with two centers, at 
Argonne and at Oak Ridge National Laboratory 

• Deploys and operates at least two advanced 
architectures that are 10-100 times more 
powerful than systems typically available for 
open scientific research

• Fully dedicated to open science to address the 
ever-growing needs of the scientific community

Argonne Leadership Computing Facility6
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ALCF Staff

To ensure facility users are able to
get the most out of its supercomputers, 
the ALCF has assembled an 
exceptional team of:

• HPC system and network administrators
• computational scientists,
• computer scientists
• data scientists
• performance engineers
• visualization experts
• software developers
• user support staff
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ALCF at a Glance in 2021
• Users pursue scientific challenges
• In-house experts to help maximize results
• Resources fully dedicated to open science

33.5M node-hours of compute time  

active projects

facility users

publications

375
1,168
230+ 

01 | Academia: 571

02 | Government: 558

03 | Industry: 82



Argonne Leadership Computing Facility9

ALCF Allocation Programs

20%
60%

20%

INCITE: Innovative and Novel Computational Impact on 
Theory and Experiment
§ Yearly call with computational readiness and peer reviews
§ Open to all domains and user communities

ALCC: ASCR Leadership Computing Challenge
§ Yearly call with peer reviews
§ Focused on DOE priority

DD: Director’s Discretionary Program
§ Rapid allocations for project prep and immediate needs

– Early Science Program (ESP)
– Exascale Computing Project (ECP)
– ALCF Data Science Program (ADSP)
– Proprietary Projects
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Accessing ALCF Resources for Science
As a national user facility dedicated to open science, any
researcher in the world with a large-scale computing
problem can apply for time on ALCF computing resources.
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Computing Resources

Grand and Eagle (Storage)
Each system has: 
• HPE ClusterStor E1000
• 100 petabytes of usable capacity
• 8,480 disk drives
• Lustre filesystem

§ 160 Object Storage Targets
§ 40 Metadata Targets

• HDR InfiniBand network
• 650 GB/s rate on data transfers

JLSE Experimental Testbeds
• 150 nodes
• Intel/AMD/IBM/Marvell/GPGPU
• EDR/100GbE/OPA 
• Lustre/GPFS/DAOS
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ALCF Systems Evolution

Aurora
Intel-HPE
2022

Crux
HPE-AMD

Polaris
HPE
2021

+
Theta
Intel-Cray XC40
2017

Mira
IBM BG/Q
2012

Intrepid
IBM BG/P
2007

IBM BG/L
2004

ThetaGPU
NVIDIA 
DGX A100
2020

5.7 TF

557 TF

10 PF
11.7 PF

15.6 PF
44 PF

> 2 EF
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Aurora
Argonne’s upcoming exascale 
supercomputer will leverage 
several technological 
innovations to support machine 
learning and data science 
workloads alongside traditional 
modeling and simulation runs.

≥2 Exaflop DP
SUSTAINED PERFORMANCE

Ponte Vecchio
Xe ARCHITECTURE-BASED GPU

Sapphire Rapids
INTEL XEON SCALABLE PROCESSOR

HPE Cray EX
PLATFORM

Compute Node
2 Intel Xeon scalable “Sapphire
Rapids” processors; 6 Xe arch-based
GPUs; Unified Memory Architecture; 8
fabric endpoints; RAMBO

GPU Architecture
Xe arch-based “Ponte Vecchio”
GPU; Tile-based chiplets, HBM stack,
Foveros 3D integration, 7nm

CPU-GPU Interconnect
CPU-GPU: PCIe
GPU-GPU: Xe Link

System Interconnect
HPE Slingshot 11; Dragonfly
topology with adaptive routing

Network Switch
25.6 Tb/s per switch, from 64–200 Gbs
ports (25 GB/s per direction)

High-Performance Storage
≥230 PB, ≥25 TB/s (DAOS)

Programming Models
Intel oneAPI, MPI, OpenMP, C/C++,
Fortran, SYCL/DPC++

Node Performance
>130 TF

System Size
>9,000 nodes
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Aurora Compute Node
• 6 Xe Architecture based GPUs (Ponte Vecchio)

•  All to all connection

• 2 Intel Xeon (Sapphire Rapids)  processors
• Unified Memory Architecture  across CPUs and GPUs
• 8 Slingshot Fabric endpoints

Aurora node

SPR+HBM 

SPR+HBM 



Argonne Leadership Computing Facility15

Argonne’s Aurora System > 60,000 Intel GPUs Science 
Starts in 2023
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Aurora Cabinets Installed at Argonne
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§ Python Ecosystem
§ Numba, NumPy, etc.

§ Deep Learning Frameworks:
§ PyTorch, TensorFlow, Horovod, DDP, 

§ Machine Learning
§ OneDAL, scikit-learn, XGBoost, etc.

§ Optimized and scalable 
communication using OneCCL

§ Spark BigData Analytics 
§ DAOS Object storage for fast I/O 

and for workflows
§ Profiling and debugging tools

Data Science and Learning on Aurora

https://software.intel.com/content/www/us/en/develop/tools/o
neapi/ai-analytics-toolkit.html

Aurora will provide for a familiar, productive and performant HPC and AI 
software stack Intel AI Analytics Toolkit

https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html


Argonne Leadership Computing Facility18

Community Data Sharing 
with Eagle
• A global filesystem deployed to bring larger and more 

capable production-level file sharing to facility users

• A space for broader distribution of reassembled data 
acquired from various experiments 

• Data originating at the ALCF
• Greater scientific community

• Science community can access uploaded data, and 
ALCF users are able to directly access the data for 
analysis

• Designed to foster experimentation
• Analysts are able to write new algorithms to 

attempt analyses that have never been performed

• HPE ClusterStor E1000
• 100 petabytes of usable capacity
• 8,480 disk drives
• Lustre filesystem
• 160 Object Storage Targets
• 40 Metadata Targets
• HDR InfiniBand network
• 650 GB/s rate on data transfers
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Advancing science with HPC

ALCF AI-Testbed

• ALCF AI pathfinding effort provides insights on cutting-edge 
AI technology and how it improves science outcomes

• Evaluates the usability and performance of machine 
learning-based applications running on these accelerators

• a deep learning accelerator, reconfigurable dataflow 
units, intelligent processing unit- (IPU) based systems

• Ongoing work is guiding the facility toward a future marked 
by extreme heterogeneity in the compute: CPUs, GPUs, AI, 
and other accelerators

AI testbeds include:
• SambaNova DataScale
• GraphCore MK1
• Groq
• Cerebras CS-2
• Habana Gaudi



Science
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Contribution
to Science
To prepare for future exascale 
systems, the ALCF is driving a 
new paradigm for scientific 
computing.

Argonne Leadership Computing Facility21

Modeling & 
Simulation

Data 
Science

Machine 
Learning

Used to study things that are too 
big, too small, or too dangerous to 
study in a laboratory setting.

Researchers can glean insights 
from very large datasets produced 
by experimental, simulation, or 
observational methods.

A type of artificial intelligence that 
trains computers to discover hidden 
patterns in data to make novel 
predictions without being explicitly 
programmed. 
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LCF Growth and Impact of the INCITE Program

Unprecedented 
simulation of 
magnitude-8 
earthquake over 
125-square miles. 
Proc. SC10

World’s first continuous 
simulation of 21,000 years 
of Earth’s climate history. 
Science (2009)
Largest-ever LES of a full-
sized commercial 
combustion chamber used 
in an existing helicopter 
turbine. Compte Rendus 
Mecanique (2009)

Largest simulation of a 
galaxy’s worth of dark matter, 
showed for the first time the 
fractal-like appearance of 
dark matter substructures. 
Nature (2008), Science 
(2009)

Calculation of the 
number of bound nuclei 
in nature. Nature 
(2012)
NIST proposes new 
standard reference 
materials from LCF 
concrete simulations.

OMEN breaks the 
petascale barrier using 
more than 220,000 cores. 
Proc. SC10
New method to rapidly 
determine protein 
structure, with limited 
experimental data. 
Science (2010), Nature 
(2011)

Researchers solved the 
2D Hubbard model and 
presented evidence that it 
predicts HTSC behavior. 
Phys. Rev. Lett (2005) 

~2X per year

Modeling of molecular 
basis of Parkinson’s 
disease named #1 
computational 
accomplishment. 
Breakthroughs (2008)

Recovery from 
slow inactivation 
in potassium 
channels 
controlled by H2O. 
Nature (2013)

Carbon-based 
tribofilms from 
lubricating oils. 
Nature (2016)

Macroscale 
superlubricity 
enabled by graphene 
nanoscroll formation. 
Science (2015)

~3X per year

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019* 2020* 2021

Hours 4.9M 6.5M 18.2M 95M 268M 889M 1.6B 1.7B 1.7B 4.7B 5.8B 5.8B 5.8B  5.8B   5.9B 71M 37.6M 39.9M
Projects 3 3 15 45 55 66 69 57 60 61 59 56 56 55 55 62 47 47

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Ultra-selective high-
flux membranes 
from directly 
synthesized zeolite 
nanosheets. Nature 
(2017)

Quantitative 3D 
evolution of 
colloidal 
nanoparticle 
oxidation in 
solution. 
Science (2017)

Overcame 
limitations 
modeling 
massive 
stars. Nature 
(2018)

Microscope-
in-a-computer 
to help find 
early cancer. 
Nature (2019)

Accelerate 
vaccine and 
drug 
identification 
for COVID-
19. Proc. 
SC20

~4X per 
year

*change allocation unit

High-Fidelity 
Gyrokinetic 
Simulation of 
Tokamak and 
ITER Edge Physics. 
Phys. Plasma 
(2021)
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a proof-of-concept, RMG-Cat successfully discovered the major kinetic pathways for 
CH4 oxidation on nickel; in less than 5 minutes on a single core, RMG-Cat was able to 
find all the same reactions as a microkinetic mechanism developed over several years by 
a team of experts. RMG-cat can use a single node effectively. An entire RMG-Cat run 
can take between a few seconds to a few hours on a personal laptop, but for the purposes 
of this application we only need to know which thermodynamic and kinetic parameters 
are absent or poorly estimated. This node-bound preprocessing step only takes a few 
seconds to evaluate. Once these parameters have been calculated through the workflow 
RMG-Cat can be run entirely as a post-processing step, and if necessary this process can 
be iterated upon until all relevant species are calculated. For each species, and all related 
reactions between those species that RMG-cat does not have information for, we will 
launch an instance of our search suite (KinBot, GAlgo, LRT) in parallel. 
Once the area to search is defined KinBot and GAlgo will use learning techniques such as 
genetic algorithms to efficiently explore the PES. These efficient searches will require 
hundreds of thousands (106) of individual energy evaluations and will simultaneously 
learn a low rank tensor (LRT) approximation of the PES that will be used to expedite the 
search and to calculate the kinetic and thermochemical parameters.  
Each of these searches will be carried out in the following manner, as shown in figure 1. 
At each step, GAlgo proposes a configuration to evaluate an objective function that 
measures the proximity of that particular configuration to a critical point of interest (e.g. 
saddle point or a local minimum). The configuration is represented by RxN matrix, where 
R is the number of configurations, and N is the dimensionality (e.g. for normal 
coordinates N=3a-6 where a is the number of nuclei), while the objective function 
requires KinBot to evaluate the PES from a computational chemistry application such as 
NWChem, as well as gradients with respect to each dimension, leading to a matrix of size 
Rx(N+1). GAlgo then uses the objective function value to propose a new configuration as 
it proceeds with the search of saddle points. KinBot generates input and parses output 
from simulations to feed these energies and gradients into LRT. LRT will need the 
aggregated number of PES evaluations input/output pairs, as MxN and Mx1 matrices, 
respectively, where M is the total, aggregated number of PES evaluations. The 
constructed LRT approximation (stored as a coefficient tensor) will be invoked instead of 
the PES evaluation if GAlgo's imposed accuracy tolerance is met. Our current estimates 
for the above dimensionalities are: N~100, M~106, and R~104.  

 
Figure 1: Application workflow 

RMG-Cat	encounters	
unknown	chemistry	

KinBot	initiates	
phase	space	search	
for	minima	and	
transition	states	

Properties	stored	
in	database	

High	Accuracy	
Single	Point	jobs	

LRT	
approximation	of	
the	surface	

GAlgo	inquires	the	
surface	evaluation	

PES		
or	LRT	

Submit	
Quantum	
Chemistry	
Job	to	Queue	

Data/ Learning for Exascale CFD K . E . J ansen

F igure2: Isosurfaceof instantaneousQ criterion colored by speed over a vertical tail at Re= 3.5 105,
with a rudder deflection angle of 30 degrees and 12 unsteady jets active. T his DES simulation
shows our method’s ability to refine the grid to capture the unsteady structures resulting from the
separation near the rudder and from the interaction between the unsteady jets and the crossflow.

(a) CFD - F irst adapted mesh. (b) CFD - Second adapted mesh. (c) Experiments.
F igure 3: Phase-averaged isosurface of velocity (color) and vorticity (grey) revealing coherent struc-
tures in the wake of a synthetic jet located at the junction between the stabilizer and the deflected
rudder of a vertical tail. Comparison between CFD predictions on two successive adapted meshes
and experimental results (c).
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Figure	1:	Workflow	of	the	proposed	simulations	

2e. Application Summary  
The proposed simulations embody a complex 
workflow, which integrates several codes and 
algorithms, as illustrated in Figure 1. Data will be 
generated by the electronic structure layer, comprising 
the Quantum Espresso9-10 code for generating low-cost, 
low-fidelity DFT data and the BerkeleyGW code for 
generating high-cost, high-fidelity MBPT data. Data 
from quantum mechanical simulations will flow into 
two layers of machine learning, a discovery layer and a 
decision layer. The discovery layer includes feature 
selection, using the SISSO code, to identify low-cost 
features that correlate strongly with high-cost excited 
state properties, as well as algorithms such as subgroup 
discovery11-12 to reveal patterns in data. The discovery layer will further promote deeper understanding of 
the underlying physics. Information from the discovery layer will feed into the decision layer, in which 
Bayesian optimization algorithms will decide which data points to sample next and at what level of 
fidelity. Decisions will be translated to queries of the CSD database, a large repository of unlabeled data, 
and coordinates of structures pulled out of CSD will be fed back into the electronic structure layer to 
acquire labels. This process will repeat iteratively in order to refine our models. Structures identified as 
promising candidates at any point will be further evaluated using high-fidelity GW+BSE calculations to 
accurately predict their electronic and optical properties. Due to the high computational cost of MBPT 
calculations of large periodic systems with several hundred atoms, we expect most of the computer time 
requested to be spent on BerkeleyGW calculations. The computational cost of DFT and ML calculations 
is negligible in comparison. Therefore, the proposed development plan is focused primarily on the 
BerkeleyGW code. Additional goals are scalability improvements of SISSO and development of Python 
workflow management tools to integrate and automate the whole workflow.  

2e.i. Application Software Requirements 
Quantum ESPRESSO: 
Language: FORTRAN-90 
Libraries: ScaLAPACK, ELPA, LAPACK, BLAS, FFTW 
Parallelism: MPI, OpenMP 
Past DOE Readiness Programs: NESAP for Cori 

BerkeleyGW : 
Language: FORTRAN 2008 
Libraries: ScaLAPACK, ELPA, LAPACK, BLAS, FFTW 
IO Libraries: Parallel HDF5 
Past DOE Readines Programs: NESAP For Cori 

SISSO: 
Language: FORTRAN 
Libraries: BLAS, LAPACK 
Parallelism: MPI	
Past DOE Readines Programs: optimization on Theta is underway within INCITE project	
Multi-fidelity Bayesian Optimization:  
Language: Python 
Libraries: cuDNN, CUDA, Tensorflow, Pytorch 
Parallelism: CUDA on GPUs 

 
Figure 1:  Data flow and summary of the FRNN algorithm 
 
Missing a real disruption (false negative) can be costly because of the damaging effects of a disruption, while triggering a false 
positive alarm wastes valuable experimental time and resources.  Setting the threshold allows a tradeoff between these two 

S LD
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Classification

Regression

Reinforment learning

Clustering

Uncertainty Quantification

Dimensionality Reduction

Reduced  / Surrogate Models 

Advanced Statistics

Image and Signal Processing

Graph Analytics

Databases

Advanced Workflows

In Situ Viz & Analysis

Virtual Drug Response Prediction

Enabling Connectomics at Exascale to 
Facilitate Discoveries in Neuroscience

Machine Learning for Lattice Quantum 
Chromodynamics

Accelerated Deep Learning Discovery in 
Fusion Energy Science

Many-Body Perturbation Theory Meets 
Machine Learning 

Exascale Computational Catalysis

Dark Sky Mining

Data Analytics and Machine Learning for 
Exascale CFD

In Situ Visualization and Analysis of Fluid-
Structure-Interaction Simulations

Simulating and Learning in the ATLAS 
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Connectomics Data-driven Models

~1cm^3

sample

~1mm^3

section

section

section

section

section

section

 25000 
40nm sections
1mm x 1mm

(6nm resolution)

Each section
imaged with EM as

N tiles (8 bit)

Sections
stitched
together

How much image data is 1mm^3 ?  1e15 voxels -> ~1 PB 

Mouse brain: 70M neurons

Data from Gregg Wildenberg, Kasthuri Lab, UChicago

80K x 40K pixels
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data challenges in connectomics

~1cm^3
How much image data 
is 1cm^3 ? ~1EB 

~1000cm^3
How much image data is 
1000cm^3 ?  ~1000 EB

(6nm x 6nm x 40nm) 

Reconstructed data 
will be much larger:

- Segmentation labels 
for each voxel (4x 
voxel data)

- 3D Mesh
- Skeleton

Mouse brain: 70M neurons Human brain: 80B neurons

tiny brain

The structures are expected to be 
used to seed simulations to study 
flow in neuro transmitters, in better 
modeling the brain, among others.
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Connectomics  processing

2
8

Sections
stitched
together

Align
sections

Mask out
non-target

objects

Segment
target

objects

Data from Gregg Wildenberg, Kasthuri Lab, UChicago
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large-scale reconstruction
• Inference (and training) has scaled on CPU-based and GPU-based supercomputers (parallel 

granularity: overlapping subvolumes)
⏤ Achieved million-way concurrency on Theta supercomputer

• Image stitching and alignment components are being scaled as well to ensure a scalable end-to-end 
pipeline

Dong, et al, “Scaling Distributed Training of Flood-Filling Networks on HPC Infrastructure for Brain Mapping”, 2019 
IEEE/ACM Third Workshop on Deep Learning on Supercomputers (DLS) at SC19

Vescovi, et al, “Toward an Automated HPC Pipeline for Processing Large Scale Electron Microscopy Data”, 2020 
IEEE/ACM 2nd Annual Workshop on Extreme-scale Experiment-in-the-Loop Computing (XLOOP) at SC19

Exascale Inference Problem:
▪On a single GPU (A100), we achieve ~80 MegaVoxels/hour using 32-bit 

(There is still room for improvement here)
▪In reduced precision (8-16 bits),  we expect ~1 GigaVoxel/hour per GPU
▪1 PetaVoxel (1mm3) will take ~1M GPU node hours
▪Approximately, 24 hours on a system with 50K GPUs (considering 

overlapping subvolumes)
▪For a mouse brain (1cm3), 1 ExaVoxel, we would need ~3 years on an 

exascale system
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Mission: delivery of fusion power on the 
grid
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MIT: Alcator C-Mod (retired)
PPPL: NSTX-U (broken)
Spherical Tokamak (ST)

Tokamaks

General Atomics: DIII-D

CCFE: JET

Dead/broken tokamaks
(have access to these datasets, but not actively using them)

KFE: KSTAR
Hefei: EAST JAEA: JT-60SA

Superconducting, long pulse, tokamaks
(want access to these datasets)

Operational “traditional” tokamaks 
(current main datasets)



Argonne Leadership Computing Facility32

2022: Fusion in the news
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2022: Accelerated interest from government and 
industry
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DIAGNOSTIC DATA SOURCES

2D+ Data

ECEi imaging

Magnetic equilibria

0D Scalar Data 1D Profile Data

ρ = 0

ρ = 1
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LSTM-based architecture
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Motivation for fast LSTM training at scale: gradient 
boosted ensembles
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Search trajectory and ensemble creation



ALCF AI Testbeds
• Infrastructure of next-

generation machines with 
hardware accelerators 
customized for artificial 
intelligence (AI) applications.

• Provide a platform to 
evaluate usability and 
performance of machine 
learning based HPC 
applications running on these 
accelerators.

• The goal is to better 
understand how to integrate 
AI accelerators with ALCF’s 
existing and upcoming 
supercomputers to accelerate 
science insights

Cerebras (CS-2) SambaNova

Graphcore GroqHabana

https://www.alcf.anl.gov/alcf-ai-testbed
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Cerebras 
CS2

SambaNova 
Cardinal 

SN10

Groq 
GroqCard

GraphCore 
GC200 IPU

Habana
Gaudi1 NVIDIA A100

Compute Units 850,000 Cores 640 PCUs 5120 vector 
ALUs 1472 IPUs 8 TPC + 

GEMM engine
6912 Cuda 

Cores

On-Chip 
Memory 40 GB >300MB 230MB 900MB 24 MB 192KB L1

40MB L2

Process 7nm 7nm 14nm 7nm 14nm 7nm

System Size 2 Nodes
2 nodes 

(8 cards per 
node)

4 nodes 
(8 cards per 

node)

4 nodes 
(16 cards per 

node)

2 nodes
(8 cards per 

node)

Several 
systems

Estimated 
Performance 
of a card 
(TFlops)

>5780 (FP16) >300 (BF16) >188 (FP16) >250 (FP16) >150 (FP16) 312 (FP16), 156 
(FP32)

Software Stack 
Support

Tensorflow, 
Pytorch

SambaFlow, 
Pytorch

 GroqAPI, 
ONNX

Tensorflow, 
Pytorch, PopArt

Synapse AI, 
TensorFlow 
and PyTorch

Tensorflow, 
Pytorch, etc

Interconnect Ethernet-based Infiniband RealScale TM IPU Link Ethernet-based NVLink
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Director’s Discretionary (DD) awards 
support various project objectives from 
scaling code to preparing for future 
computing competition to production 
scientific computing in support of 
strategic partnerships.

Allocation Request Form

Getting Started on ALCF Systems 
including the AI Testbed:

 
Apply for a Director’s 

Discretionary (DD) Allocation 
Award

ALCF systems, including AI testbed 
systems - Cerebras CS-2 and 
SambaNova Datascale - are available 
for allocations.

https://www.alcf.anl.gov/science/directors-
discretionary-allocation-program

https://www.alcf.anl.gov/science/directors-discretionary-allocation-program
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Integrating AI systems in facilities

AI-Accelerators

Experimental	Facility
Supercomputers

Simulations

AI-Edge	accelerator

SambaNova

Cerebras

Computing	Facility

Data-driven	Models
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AI FOR SCIENCE APPLICATIONS ON AI TESTBED

Protein-folding(Image: NCI)

Tokomak Fusion Reactor operations

Cancer drug response prediction

Imaging Sciences-Braggs Peak

 
Figure 1:  Data flow and summary of the FRNN algorithm 
 
Missing a real disruption (false negative) can be costly because of the damaging effects of a disruption, while triggering a false 
positive alarm wastes valuable experimental time and resources.  Setting the threshold allows a tradeoff between these two 

and more..
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Cosmic tagger on Sambanova datascale

M. Emani et al., "Accelerating Scientific Applications With SambaNova Reconfigurable Dataflow 
Architecture," in Computing in Science & Engineering, vol. 23, no. 2, pp. 114-119, 1 March-April 2021, doi: 
10.1109/MCSE.2021.3057203.

SambaNova RDUs able to accommodate larger image sizes and achieve higher accuracy 
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Early Experience with Inference on Groq

3ms

5.5ms
0.14ms

0.6ms

Forecasting Plasma Instability in Tokamak COVID19 Candidate drug molecule screening

Promising results using GroqChip for science Inference use-cases with 
respect to latency and throughput in comparison to GPUs



ALCF Outreach
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Summer Student Research
Program

• College students work side-by-side with staff 
mentors. 

• Work utilizes some of the world’s most 
powerful supercomputers.

• Opportunities in computational science, 
system administration, and data science. 

ALCF’s internship program provides opportunities
to work on real-world research projects.



Opportunities at Argonne
Undergraduate Graduate Faculty

https://www.anl.gov/education/faculty-programshttps://www.anl.gov/education/graduate-programshttps://www.anl.gov/education/undergraduate-programs



Thank You
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ALCF Organizational Chart
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oneAPI

https://software.intel.com/oneapi

• Industry specification from Intel (https://www.oneapi.com/spec/)
• Language and libraries to target programming across diverse architectures 

(DPC++, APIs, low level interface)

• Intel oneAPI products and toolkits (https://software.intel.com/ONEAPI)
• Languages

• Fortran (w/ OpenMP 5+)
• C/C++ (w/ OpenMP 5+)
• DPC++
• Python

• Libraries
• oneAPI MKL (oneMKL)
• oneAPI Deep Neural Network Library (oneDNN)
• oneAPI Data Analytics Library (oneDAL)
• MPI

• Tools
• Intel Advisor
• Intel VTune
• Intel Inspector

https://software.intel.com/oneapi
https://www.oneapi.com/spec/
https://software.intel.com/ONEAPI
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Available Aurora Programming Models 

• Aurora applications may use:
• DPC++/SYCL
• OpenMP
• Kokkos
• Raja
• OpenCL

• Experimental 
• HIP

• Not available on Aurora:
• CUDA
• OpenACC HIP
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ITER Tokamak - Predict ITER plasma behavior with 
Tungsten impurity ions

53

Divertor
Tungsten
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Showcase

H. Jiang, "Intel's Ponte Vecchio GPU : Architecture, Systems & Software," 2022 IEEE Hot Chips 34 Symposium (HCS), 2022, 
pp. 1-29, doi: 10.1109/HCS55958.2022.9895631.
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Showcase

H. Jiang, "Intel's Ponte Vecchio GPU : Architecture, Systems & Software," 2022 IEEE Hot Chips 34 Symposium (HCS), 2022, 
pp. 1-29, doi: 10.1109/HCS55958.2022.9895631.
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AI-Driven Drug Discovery for 
SARS-CoV-2 Proteome

• Science Summary: 
Using AI techniques to screen over 6 million small molecules, 
researchers identified at least 20 partially active molecules that can 
potentially inhibit viral function in wet lab experiments. 

• The 20 candidates are being validated in labs for activity against the 
virus. The work also generated new models for any small molecules 
and antibodies. Data are publicly available.

• Impact: This research will aid in the design of antibodies for the 
virus.

• PI: Arvind Ramanathan, Argonne National Laboratory
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Data-Driven Design of Solar Cells

• Science Summary: Light-absorbing dyes are promising, low-cost materials 
for organic dye-sensitized solar cells that can passively supply energy 
through tinted windows. Using data mining, machine learning, and 
computational modeling techniques, researchers identified two high-
performing dyes, and then produced a solar cell competitive with common 
industry materials. 

• Impact: The team’s use of data mining, in conjunction with large-scale 
simulations and experiments, offers a novel approach to advance the 
design and discovery of new functional materials. In addition, the project’s 
development of open-source databases and data-extraction software tools 
will help accelerate materials discoveries by removing the hurdle of manual 
database creation.

• PI: Jacqueline Cole, University of Cambridge
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The Last Journey 

• Science Summary: In the final months of Mira’s operation, researchers ran 
one of the largest cosmological simulations using cutting-edge 
observational advances from satellites and telescopes. Evolving a massive 
number of particles, the simulation was designed to help resolve mysteries 
of dark energy and dark matter. Results will form the basis for sky maps 
used by numerous surveys.

• Impact: The team’s simulation was designed to address numerous 
fundamental questions in cosmology; the data produced are essential for 
enabling the refinement of existing predictive tools and aid the development 
of new models. Their research will impact both ongoing and upcoming 
cosmological surveys, including the Dark Energy Spectroscopic Instrument 
(DESI), the LSST, SPHEREx, and the “Stage-4” ground-based cosmic 
microwave background experiment (CMB-S4).

• PI: Katrin Heitmann, Argonne National Laboratory
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… Polari
sEagleAPS19-ID1-ID …

AP
S

ALC
F

Flows

Local
agents

Cloud automation services: Auth, Transfer, Flows, Search, 
funcX   

Transfer1 Analyze3Transfer2 Catalog4

32

4

1

Toward Coupling ALCF with Experimental Sciences
• On-demand computing facilitated by pre-emption and flexible resource provisioning, 

data services capabilities, together with 200Gbps+ external network connectivity, 
among others, enable real-time coupling at ALCF with experimental science
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Example: Rapid Training of Deep Neural 
Networks using Remote Resources
• DNN at the edge for fast processing, filtering, QC

• Requires tight coupling with simulation and training with real-time 
data

• Near real-time steering of the experiment towards points of 
interest

60

Zhengchun Liu, Jana Thayar, et al.

See Zhengchun’s talk next
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COVID-19 CVAE Training on Summit and Cerebras CS-2 

Performance 523 X 523 926 X 926
Throughput (samples/sec)

1x CS-2 System 24,000 4700

1x V100 GPU 228 51

1x A100 GPU ~1100 ~150

Speedup (CS2 vs. GPU )
1 x V100 GPU 113x 101x

1 x A100 GPU ~22X ~32X

• Single CS-2 delivers performance of 
over 100 GPUs on CVAE

• Results are for out-of-the-box 
performance based on model config 
not optimized for CS-2. 

1 2 4 6 8 48 96 192 384 768 1536
Total	GPUs

300

1200
2200
4700
9000
15000

36000
70000
150000

24000

300000

Sa
m
pl
es
/s

Chain	H	-	523	Residues	-	V100
Chain	H	-	523	Residues	-	A100
Chain	A	-	926	Residues	-	V100
Chain	A	-	926	Residues	-	A100
Single	CS-2	System	-	523	Residues
Single	CS-2	System	-	926	Residues

Intelligent Resolution: Integrating Cryo-EM with AI-driven Multi-resolution Simulations to Observe the SARS-CoV-2 
Replication-Transcription Machinery in Action, SC21 COVID19 Gordon Bell Finalist, In IJHPCA 2022 
https://www.biorxiv.org/content/10.1101/2021.10.09.463779v1.full.pdf

CS-2 523 Residues

CS-2 926 Residues

Performance similar 
to 16 Summit nodes 
and ~4 ThetaGPU 
Nodes
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Fast X-Ray Bragg Peak Analysis
Goal:  Enable rapid analysis and real-time 
feedback during an in-situ experiment with 
complex  detector technologies

Proposed Approach: Deep learning-
based method, BragNN,  for massive  
extraction of precise  Bragg peak locations 
from far-field high energy diffraction  
microscopy data. BragNN has achieved 
200X improvement over conventional 
pseudo-Voight profiling

Challenges: Model training capability is 
limited by the hardware

Application of the BraggNN deep neural network to an input patch yields a peak center 
position (y, z). All convolutions are 2D of size 3 × 3, with rectifier as activation function. Each 
fully connected layer, except for the output layer, also has a rectifier activation function. 

Courtesy: Z. Liu et al. BraggNN: Fast X-ray Bragg Peak Analysis Using Deep 
Learning. International Union of Crystallography (IUCrJ), Vol. 9, No. 1, 2022

A comparison of BraggNN, 
pseudo-Voigt FF-HEDM and NF-
HEDM. (a) Grain positions from 
NF-HEDM (black squares), 
pseudo-Voigt FF-HEDM (red 
circles) and BraggNN FF-HEDM 
(blue triangles) overlaid on NF-
HEDM confidence map 

https://doi.org/10.1107/S2052252521011258
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Fast X-Ray Bragg Peak Analysis
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BragNN End-to-End execution time (Lower is better)

Fixed (I/O and pre-processing) Time
Training Time

SambaNova and Graphcore achieve lowest time to solution and achieve up to 3.7X to 3.4X 
speedup in comparison to Nvidia A100 respectively. Cerebras achieves up to 80% 
improvement over A100 

“A comprehensive evaluation of Novel AI accelerators for Deep Learning Workloads”, M. 
Emani et. al, To appear at PMBS workshop SC’22
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Fast X-Ray Bragg Peak Analysis

For training time, we ignore the data loading and pre-processing time (Fixed cost time). 
Cerebras CS2 achieves up to 33X improvement over A100 while SN and Graphcore 
achieve up to 6-11X improvement over A100 respectively for training.
Note: Cerebras performance includes use of multi-replica optimization.
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