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Machine Learning Based Accelerator Control

Goals:
• Automate routine tasks + improve performance

• Enable new capabilities

Challenges:
• Practical constraints and complexities of realistic accelerators

• Incorporating prior knowledge

• Scaling
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Global Optimization Strategies

Gradient descent 

(SGD, Adam etc.)

Black box 

optimization 

algorithms

Scales to >10k parameters

(see ML training)

Scales poorly with 

input dimension if not unimodal

Yes No

Can you calculate 

gradients easily?

Go ahead, try it with simplex…

- Analytical models
- Simulations

- Experiments
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Model Based Optimization of Accelerators

Can we improve black box optimization with surrogate models? YES

… but we must consider the cost of creating models with enough information

Duris et al. PRL 2020

Roussel et al. PRAB 2021

Hanuka et al. PRAB 2021

Miskovich et al. PRAB 2021

…and many more

Create a computational 

model of the system

Pick the point that 

maximizes value

Determine the value of 

potential future 

measurements
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Model Based Optimization of Accelerators

Gaussian processes (GPs)

Why?

- Extracts a lot of information from a small number of data points → efficient

- Produces explicit uncertainty estimations -> advantageous for global optimization
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Bayesian Statistics: A Practical Example

https://xkcd.com/1132/

A: our measurement 

(we measure that the sun 

has/has not exploded)

B: our prediction 

(the sun has/has 

not exploded)

𝑝 𝐵|𝐴 =
𝑝 𝐴|𝐵 𝑝(𝐵)

𝑝(𝐴)

likelihood prior
posterior

marginal likelihood
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Bayesian Statistics: A (More) Practical Example

𝑝 𝑤0, 𝑤1|𝒚𝑁, 𝒙𝑁
∝ 𝑝 𝒚𝑁|𝑤0, 𝑤1, 𝒙𝑁 𝑝(𝑤0, 𝑤1)

Bayesian regression 

(determining the weights):

Making predictions:

𝑝 𝒚𝑀|𝑤0, 𝑤1, 𝒙𝑀

Note: least squares fitting is 

equivalent to using a uniform prior 

and Gaussian likelihood M. Krasser. https://nbviewer.org/github/krasserm/bayesian-machine-

learning/blob/dev/bayesian-linear-regression/bayesian_linear_regression.ipynb

𝑦 = 𝑤0 +𝑤1𝑥 + 𝜖

Model: Gaussian noise
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Parametric vs. Non-Parametric Modeling

𝑓 𝑥) = 𝑓(𝑥; 𝜃

Parametric modeling Non-Parametric modeling

𝑓 = {𝜃0 𝑥0 , 𝜃1 𝑥1 , … , 𝜃𝑁(𝑥𝑁)}
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Some intuition…

𝑝 𝑓∗ = 𝑁 0,1

Let’s predict the function value 𝑓∗ at the point 𝑥
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Some intuition…

Which observation will have a larger impact on changing p(f)?

𝑝 𝑓∗
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Adding some math

Which observation will have a larger impact on changing p(f)?

k(x, x’)

k(x, x’’)
k(x, x’) < k(x, x’’)

𝑝 𝑓∗
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Adding some math

𝚺 =

𝑘 𝑥′, 𝑥′ 𝑘 𝑥′, 𝑥′′ 𝑘 𝑥′, 𝑥

𝑘 𝑥′, 𝑥′′ 𝑘 𝑥′′, 𝑥′′ 𝑘 𝑥′′, 𝑥

𝑘(𝑥′, 𝑥) 𝑘(𝑥′′, 𝑥) 𝑘(𝑥, 𝑥)

K K*

K**K*^T

𝑝 𝑓𝐴, 𝑓𝐵, 𝑓
∗ = 𝑁 𝝁, 𝚺

𝑝 𝑓∗| 𝑓𝐴, 𝑓𝐵 =
𝑝 𝑓𝐴, 𝑓𝐵|𝑓

∗ 𝑝(𝑓∗)

𝑝(𝑓𝐴, 𝑓𝐵)
=
𝑝 𝑓𝐴, 𝑓𝐵 , 𝑓

∗

𝑝(𝑓𝐴, 𝑓𝐵)

𝑝 𝑓∗

Bayes rule
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Adding some math

K K*

K**K*^T

𝑝 𝑓∗| 𝑓𝐴, 𝑓𝐵 = 𝑁(𝝁∗, 𝝈∗)

𝝁∗ = 𝝁 + 𝐾∗𝐾−1(𝒚 − 𝝁)
𝝈∗ = 𝐾∗∗ − 𝐾∗𝑇𝐾−1𝐾∗

𝐾−1~𝒪(𝑁3)!

𝑝 𝑓∗

𝑝 𝑓∗| 𝑓𝐴, 𝑓𝐵 =
𝑝 𝑓𝐴, 𝑓𝐵|𝑓

∗ 𝑝(𝑓∗)

𝑝(𝑓𝐴, 𝑓𝐵)
=
𝑝 𝑓𝐴, 𝑓𝐵 , 𝑓

∗

𝑝(𝑓𝐴, 𝑓𝐵)
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Making predictions with GP’s

What about multiple predictions?

Draw function samples? Sample from the joint 

posterior distribution at requested points

Distribution

Samples

𝑝 𝑓0
∗, 𝑓1

∗, … , 𝑓𝑀
∗ |𝑓0, 𝑓1, … , 𝑓𝑁 = 𝑁(𝝁∗, 𝝈∗)

(𝑁 𝑥 𝑁) (𝑁 𝑥 𝑀)

(𝑀 𝑥 𝑀)

𝑝 𝑓𝑚
∗ |𝑓0, 𝑓1, … , 𝑓𝑁

𝑥𝑚
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Another perspective

Rasmussen and Williams. 2006
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Fitting Gaussian Processes to Data

Need to determine the form and hyperparameters of the kernel

Each kernel has hyperparameters that control 

the overall function behavior.

𝑘 𝑥, 𝑥′ = 𝝈𝒇
𝟐 exp −

1

2𝒍2
𝑥 − 𝑥′ 2 + 𝝈𝑛

2𝛿𝑥𝑥′

R&W

Kernel amplitude

Kernel length scale Noise

Radial Basis Function:
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Fitting Gaussian Processes to Data

Need to determine the form and hyperparameters of the kernel

We fit kernel parameters to data by using 

Maximum Likelihood Estimation (MLE or MLE-

II).

𝜽∗ = argmax𝜽 log 𝑝(𝒚|𝜽, 𝑿)

With a Gaussian likelihood the log likelihood can 

be calculated analytically:

log 𝑝(𝒚|𝜽, 𝑿) = −
1

2
𝑦𝑇𝐾−1𝑦 −

1

2
log 𝐾 −

𝑛

2
log 2𝜋

Predictive accuracy Model complexity
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More Expressive Kernels

We can also encode low dimensional structure into the kernel.

Rasmussen and Williams. 2006

𝑘 𝒙, 𝒙′ = 𝜎𝑓
2 exp −

1

2
𝒙 − 𝒙′ 𝑇𝚺(𝒙 − 𝒙′)

𝚺 = diag 𝒍 −2

Automatic relevance determination

𝚺 = 𝚲𝚲𝑇 + diag 𝒍 −2

Factor analysis distance
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Fitting Gaussian Processes to Data

Need to determine the form and hyperparameters of the kernel

Radial Basis Function:

Stationary

Periodic:

Stationary

Linear:

Non-stationary

D. Duvenaud, https://www.cs.toronto.edu/~duvenaud/cookbook/
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Model Based Optimization of Accelerators
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The Acquisition Function

Define a function that characterizes the value of making a potential 

measurement (given a predictive model). Exploitation

Exploration
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Single Objective Optimization

Expected Improvement Upper Confidence Bound

EI 𝒙 = 𝔼[max(𝑓 𝒙 − 𝑓∗)] UCB 𝒙 = 𝜇 𝒙 + 𝛽𝜎(𝒙)

Note: most implementations of BO assume maximization
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Single Objective Optimization

EI 𝒙 = 𝔼[max(𝑓 𝒙 − 𝑓∗)]

Some notes:

- The model accuracy improves in the region of interest!

- Initially the model uncertainty is maximized at the domain boundaries, BO likes to 

sample those

- Helpful if the acquisition function is differentiable → use gradient descent to optimize

𝒙𝑡+1 = argmax𝒙EI(𝒙)
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Multi-Objective Optimization

Determine the optimal trade-off between objectives -> the Pareto front

Roussel et. al. PRAB 2021



Weight the acquisition function by the probability that constraints are satisfied
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Incorporating Constraints

ො𝛼 𝑥 → 𝛼(𝑥)ෑ

𝑖

𝑝 𝑔𝑖 𝑥 ≤ ℎ𝑖

𝑔 𝑥 ≤ 0

Warning: Requires 𝛼 𝑥 ≥ 0

Gardner et. al. ICML 2014



Weight the acquisition function by the probability that constraints are satisfied
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Incorporating Constraints

𝛼 𝑥 → 𝛼(𝑥)ෑ

𝑖

𝑝 𝑔𝑖 𝑥 ≤ ℎ𝑖

Roussel et. al. PRAB 2021



Weight the acquisition function 

by travel distance → better than 

hard limits
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Proximal Biasing

Poor optimization 

behavior for 

experimental beamlines

ො𝛼 𝑥 → 𝛼 𝑥 exp −
𝑥 − 𝑥0

2

2𝜎2

Warning: Requires 𝛼 𝑥 ≥ 0



Weight the acquisition 

function by travel distance →

better than hard limits
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Proximal Biasing

Poor optimization 

behavior for 

experimental beamlines

ො𝛼 𝑥 → 𝛼 𝑥 exp −
𝑥 − 𝑥0

2

2𝜎2

Warning: Requires 𝛼 𝑥 ≥ 0
Roussel et. Al. Nat. Comm. 2021
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Case study: Bayesian Exploration

Autonomous characterization of novel  

systems.

- Starts with a single valid observation AND 

no prior information except for 

hardware limitations

- Samples points in a quasi-uniform grid 

where the grid spacing is learned 

automatically based on the beam 

response

- Learns where the valid region is w/limited 

invalid observations

- Considers costs associated with changing 

parameters

- Natively applicable to multi-dimensional 

exploration

- General purpose that works in almost any 

case
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Uncertainty Sampling
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Bayesian Exploration

Adaptive sampling

Unknown 

constraints

Proximal biasing

Roussel et. Al. Nat. Comm. 2021

𝛼 𝒙 = 𝜎 𝒙 ෑ

𝑖=1

𝑁

𝑝 𝑔𝑖 𝒙 ≥ ℎ𝑖 Ψ(𝒙, 𝒙𝟎)
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Characterizing Photoinjector Emittance at AWA

Determine beam emittance (ε)

as a function of:

• 2 solenoids

• 2 quadrupoles
Roussel et. Al. Nat. Comm. 2021
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Characterizing Photoinjector Emittance at AWA

Roussel et. Al. Nat. Comm. 2021

+ 2 quads!
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Implementing Bayesian Optimization

Use Botorch

- Single/multi-objective Bayesian optimization (serial and parallel)

- Constraints

- Proximal biasing

- MC Acquisition function evaluation

- Flexible incorporation of pyTorch Modules

- GPU support

See Examples: https://github.com/slaclab/bo_tutorial
See afternoon talk/poster!

https://github.com/slaclab/bo_tutorial
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Final thoughts

• Bayesian optimization is at its best when evaluating objective 

functions is expensive (incl. simulations)!

• Need to balance the costs of creating/evaluating the model vs. your

application

• Take advantage of prior information about the objective function to

speed up optimization (see NN prior poster, Nikita talk)

• Be creative with your acquisition functions to suit your optimization 

needs
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Resources

• Gaussian Processes for Machine Learning (R & W) -

https://gaussianprocess.org/gpml/

• Greenhill, Stewart, et al. "Bayesian optimization for adaptive experimental design: a 

review." IEEE access 8 (2020): 13937-13948.

• Balandat, Maximilian, et al. "BoTorch: a framework for efficient Monte-Carlo Bayesian 

optimization." Advances in neural information processing systems 33 (2020): 21524-

21538.

• Tutorial Examples: https://github.com/slaclab/bo_tutorial

https://gaussianprocess.org/gpml/
https://github.com/slaclab/bo_tutorial

