# Bayesian algorithms for practical accelerator control

Ryan Roussel

11/1/2022

rroussel@slac.stanford.edu





#### **Machine Learning Based Accelerator Control**

#### Goals:

- Automate routine tasks + improve performance
- Enable new capabilities

#### **Challenges:**

Practical constraints and complexities of realistic accelerators

Accelerated beam

Incorporating prior knowledge





f(x)

SLAC

HPC Physics Simulation

Measurement

Database

#### **Global Optimization Strategies**



Scales to >10k parameters (see ML training)

## Scales poorly with input dimension if not unimodal

Go ahead, try it with simplex...

#### **Model Based Optimization of Accelerators**

#### Can we improve black box optimization with surrogate models? **YES**



... but we must consider the cost of creating models with enough information

## **Model Based Optimization of Accelerators**



Why?

- Extracts a lot of information from a small number of data points  $\rightarrow$  efficient
- Produces explicit uncertainty estimations -> advantageous for global optimization

#### **Bayesian Statistics: A Practical Example**



![](_page_5_Figure_2.jpeg)

https://xkcd.com/1132/

## **Bayesian Statistics: A (More) Practical Example**

Gaussian noise

Model:

$$y = w_0 + w_1 x + \epsilon$$

Bayesian regression (determining the weights):  $p(w_0, w_1 | y_N, x_N)$  $\propto p(y_N | w_0, w_1, x_N) p(w_0, w_1)$ 

Making predictions:

 $p(\mathbf{y}_M | w_0, w_1, \mathbf{x}_M)$ 

Note: least squares fitting is equivalent to using a uniform prior and Gaussian likelihood

![](_page_6_Figure_7.jpeg)

![](_page_6_Figure_8.jpeg)

M. Krasser. https://nbviewer.org/github/krasserm/bayesian-machinelearning/blob/dev/bayesian-linear-regression/bayesian\_linear\_regression.ipynb

#### **Parametric vs. Non-Parametric Modeling**

# Parametric modeling

![](_page_7_Figure_2.jpeg)

350

 $f(x) = f(x;\theta)$ 

## Non-Parametric modeling

![](_page_7_Figure_5.jpeg)

#### Let's predict the function value $f^*$ at the point x

![](_page_8_Figure_2.jpeg)

#### Some intuition...

Which observation will have a larger impact on changing p(f)?

![](_page_9_Figure_2.jpeg)

#### Adding some math

Which observation will have a larger impact on changing p(f)?

![](_page_10_Figure_2.jpeg)

k(x, x') < k(x, x'')

#### **Adding some math**

![](_page_11_Figure_1.jpeg)

$$p(f_A, f_B, f^*) = N(\mu, \Sigma)$$
  
$$\Sigma = \begin{pmatrix} k(x', x') & k(x', x'') & k(x', x) \\ k(x', x'') & k(x'', x'') & k(x'', x) \\ k(x', x) & k(x'', x) & k(x, x) \end{pmatrix}$$

![](_page_11_Figure_3.jpeg)

#### **Adding some math**

k(x, x') k(x, x") A 🔸 Prior f(x)В∮  $p(f^*)$  $\mid x^{\prime\prime}$  $\mid x'$  $\mid x$  $\boldsymbol{x}$ 

$$p(f^* | f_A, f_B) = N(\mu^*, \sigma^*)$$
$$\mu^* = \mu + K^* K^{-1} (y - \mu)$$
$$\sigma^* = K^{**} - K^{*T} K^{-1} K^*$$

$$p(f^*|f_A, f_B) = \frac{p(f_A, f_B|f^*)p(f^*)}{p(f_A, f_B)} = \frac{p(f_A, f_B, f^*)}{p(f_A, f_B)}$$

![](_page_12_Picture_5.jpeg)

-SLAC

#### Making predictions with GP's

What about multiple predictions?  $p(f_0^*, f_1^*, \dots, f_M^* | f_0, f_1, \dots, f_N) = N(\mu^*, \sigma^*)$ 

![](_page_13_Figure_2.jpeg)

Draw function samples? Sample from the joint posterior distribution at requested points

![](_page_13_Figure_4.jpeg)

#### **Another perspective**

![](_page_14_Figure_1.jpeg)

Rasmussen and Williams. 2006

#### **Fitting Gaussian Processes to Data**

Need to determine the form and hyperparameters of the kernel

Each kernel has hyperparameters that control the overall function behavior.

Radial Basis Function:

$$k(x, x') = \boldsymbol{\sigma}_f^2 \exp\left(-\frac{1}{2l^2}(x - x')^2\right) + \boldsymbol{\sigma}_n^2 \delta_{xx'}$$

Kernel amplitude

Kernel length scale Noise

![](_page_15_Figure_7.jpeg)

Need to determine the form and hyperparameters of the kernel

We fit kernel parameters to data by using Maximum Likelihood Estimation (MLE or MLE-II).

 $\boldsymbol{\theta}^* = \operatorname{argmax}_{\boldsymbol{\theta}} \log p(\boldsymbol{y}|\boldsymbol{\theta}, \boldsymbol{X})$ 

With a Gaussian likelihood the log likelihood can be calculated analytically:

$$\log p(\mathbf{y}|\boldsymbol{\theta}, \mathbf{X}) = -\frac{1}{2}y^{T}K^{-1}y - \frac{1}{2}\log|K| - \frac{n}{2}\log 2\pi$$
Predictive accuracy Model complexity

![](_page_16_Figure_6.jpeg)

#### **More Expressive Kernels**

We can also encode low dimensional structure into the kernel.

output y

0

-2

$$k(\boldsymbol{x}, \boldsymbol{x}') = \sigma_f^2 \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{x}')^T \boldsymbol{\Sigma}(\boldsymbol{x} - \boldsymbol{x}')\right)$$

Automatic relevance determination

 $\Sigma = \operatorname{diag}(\boldsymbol{l})^{-2}$ 

Factor analysis distance

$$\boldsymbol{\Sigma} = \boldsymbol{\Lambda} \boldsymbol{\Lambda}^T + \operatorname{diag}(\boldsymbol{l})^{-2}$$

![](_page_17_Figure_8.jpeg)

Rasmussen and Williams. 2006

#### **Fitting Gaussian Processes to Data**

Need to determine the form and hyperparameters of the kernel

**Radial Basis Function:** 

1

![](_page_19_Figure_0.jpeg)

![](_page_20_Figure_1.jpeg)

#### **Single Objective Optimization**

#### **Expected Improvement**

![](_page_21_Figure_2.jpeg)

#### Upper Confidence Bound

![](_page_21_Figure_4.jpeg)

Note: most implementations of BO assume maximization

## **Single Objective Optimization**

![](_page_22_Figure_1.jpeg)

Some notes:

- The model accuracy improves in the region of interest!
- Initially the model uncertainty is maximized at the domain boundaries, BO likes to sample those
- Helpful if the acquisition function is differentiable  $\rightarrow$  use gradient descent to optimize

#### **Multi-Objective Optimization**

#### Determine the optimal trade-off between objectives -> the Pareto front

![](_page_23_Figure_2.jpeg)

#### **Incorporating Constraints**

Weight the acquisition function by the probability that constraints are satisfied

$$\hat{\alpha}(x) \to \alpha(x) \prod_{i} p[g_i(x) \le h_i] \quad \text{Warning: Requires } \alpha(x) \ge 0$$

![](_page_24_Figure_3.jpeg)

#### **Incorporating Constraints**

Weight the acquisition function by the probability that constraints are satisfied

$$\alpha(x) \to \alpha(x) \prod_{i} p[g_i(x) \le h_i]$$

![](_page_25_Figure_3.jpeg)

Roussel et. al. PRAB 2021

#### **Proximal Biasing**

Poor optimization behavior for experimental beamlines

Weight the acquisition function by travel distance  $\rightarrow$  better than hard limits

$$\hat{\alpha}(x) \to \alpha(x) \exp\left(-\frac{(x-x_0)^2}{2\sigma^2}\right)$$
 -

Warning: Requires  $\alpha(x) \ge 0$ 

![](_page_26_Figure_5.jpeg)

Warning: Requires  $\alpha(x) \ge 0$ 

#### **Proximal Biasing**

Poor optimization behavior for experimental beamlines

Weight the acquisition function by travel distance  $\rightarrow$ better than hard limits

$$\hat{\alpha}(x) \to \alpha(x) \exp\left(-\frac{(x-x_0)^2}{2\sigma^2}\right)$$

![](_page_27_Figure_6.jpeg)

-SLAC

## **Case study: Bayesian Exploration**

Autonomous characterization of novel systems.

- Starts with a single valid observation AND no prior information except for hardware limitations
- Samples points in a quasi-uniform grid where the grid spacing is learned automatically based on the beam response
- Learns where the valid region is w/limited invalid observations
- Considers costs associated with changing parameters
- Natively applicable to multi-dimensional exploration
- General purpose that works in almost any case

![](_page_28_Picture_8.jpeg)

![](_page_28_Figure_9.jpeg)

Possible values of x1

#### **Uncertainty Sampling**

If the function changes more rapidly along one axis, sample more points along that axis!

![](_page_29_Figure_2.jpeg)

 $\alpha(\boldsymbol{x}) = \sigma(\boldsymbol{x})$ 

![](_page_29_Figure_4.jpeg)

#### **Bayesian Exploration**

![](_page_30_Figure_1.jpeg)

## **Characterizing Photoinjector Emittance at AWA**

![](_page_31_Figure_1.jpeg)

## Determine beam emittance (ε) as a function of:

- 2 solenoids
- 2 quadrupoles

#### **Characterizing Photoinjector Emittance at AWA**

![](_page_32_Figure_1.jpeg)

Roussel et. Al. *Nat. Comm.* **2021** 33

## **Implementing Bayesian Optimization**

![](_page_33_Picture_2.jpeg)

- Single/multi-objective Bayesian optimization (serial and parallel)
- Constraints
- Proximal biasing
- MC Acquisition function evaluation
- Flexible incorporation of pyTorch Modules
- **GPU** support

See Examples: https://github.com/slaclab/bo tutorial

![](_page_33_Picture_11.jpeg)

#### **Final thoughts**

- Bayesian optimization is at its best when evaluating objective functions is expensive (incl. simulations)!
- Need to balance the costs of creating/evaluating the model vs. your application
- Take advantage of prior information about the objective function to speed up optimization (see NN prior poster, Nikita talk)
- Be creative with your acquisition functions to suit your optimization needs

![](_page_35_Picture_0.jpeg)

- Gaussian Processes for Machine Learning (R & W) <u>https://gaussianprocess.org/gpml/</u>
- Greenhill, Stewart, et al. "Bayesian optimization for adaptive experimental design: a review." IEEE access 8 (2020): 13937-13948.
- Balandat, Maximilian, et al. "BoTorch: a framework for efficient Monte-Carlo Bayesian optimization." Advances in neural information processing systems 33 (2020): 21524-21538.
- Tutorial Examples: <u>https://github.com/slaclab/bo\_tutorial</u>