
Reinforcement Learning Tutorial

Hands on Reinforcement Learning

Kishansingh Rajput
Data Science Department
Thomas Jefferson National Accelerator 
Facility

Kishan@jlab.org
Tuesday, November 1, 2022



Outline

• Introduction to Reinforcement Learning (RL)
• Types of RL algorithms
• Q functions and Bellman Equation
• Introduction to Double Deep Q Networks (DDQN)
• Exploration vs Exploitation
• OpenAI gym, and stable-baseline
• CartPole OpenAI gym environment
• FNAL Booster GMPS regulator OpenAI gym environment
• Hands on code: 
҆DDQN agent code
҆Train DDQN on Benchmark OpenAI CartPole

Environment
҆Training DDQN to regulate GMPS (Simplified Env)

2Reinforcement Learning Tutorial



Machine Learning

Reinforcement Learning Tutorial 3



Reinforcement Learning

4Reinforcement Learning Tutorial

Reinforcement Learning Example – KDNuggets

• Learning from interaction with an environment to 
achieve/maximize a long-term goal related to the state

• The goal is defined by the reward function

• The agent needs to be able to observe the environment and 
take actions to modify it’s state in order to achieve the goal



Reinforcement Learning

5Reinforcement Learning Tutorial

Environment

Agent

Reward ("#)
Action (%#)

State (&#)

Agent learns a Policy

State (&#'()



RL algorithms

6Reinforcement Learning Tutorial

Model-Based RL: The agent can predict the reward for some action before actually 
performing it thereby planning what it should do.

Model-Free RL: The agent needs to carry out the action to see what happens and 
learn from it.



Q function and Bellman Equation

7Reinforcement Learning Tutorial

Optimal Action-value function !∗($, &), which gives the expected return if 
you start in state (, take an arbitrary action ), and then forever after act 
according to the optimal policy in the environment.

Q function and optimal action

Bellman equation

• The *∗((, )) is the return value starting at state s’ and taking action a, plus the value of 
wherever you land next

• +((, )) is the immediate reward for s, a combination

• , is the discount factor

*∗ (, ) = + (., ). + ,×+ (.12, ).12 + ,3×+ (.13, ).13 … .+ ,6×+ (6, )6

*∗ (, ) = 7~9:[+ (., ). + ,×<=>?
@<A*∗ (.12, ).12 ]



Key point

8Reinforcement Learning Tutorial

• r(s, a) is an immediate reward for action ! at state "
• This indicate how good the action ! is at state "
• The goal of the agent is to maximize the cumulative reward

• Actions may have long term consequences, reward may be delayed

• Sometimes better to sacrifice immediate reward to gain more long term 
reward

Bellman equation



9

Double Deep Q-Network (DDQN)

Reinforcement Learning Tutorial

Environment

Action (a)

State (s)

Q_net

Q_target_net

Buffer
(s, a, r, s’, d) 

batch(s, a, r, s’, d) A neural network is used to learn the Q-
values corresponding to different actions at 
a given state

:
:

:
State 
vector
(s)

Hidden 
Layers

Q(s, !")
Q(s, !#)

Q(s, !$)

Training Q network (update weights)

%&' comes from Bellman equation as

We use a second network (Q target network) 
to estimate the target Q values. The weights 
of this network (′& are updated by copying 
the weights of Q network every X steps.

https://arxiv.org/pdf/1509.06461.pdf

https://arxiv.org/pdf/1509.06461.pdf


Exploration vs Exploitation

• Exploit previous experiences

҆Store (s, a, r, s’, d) tuples to a Buffer to build 
dataset (D)

҆Train the agent on the dataset (D)

• Explore new actions/states (make agent more robust)

҆To explore new actions add small noise to the 
actions

҆With new exploration the reward might decrease 
temporarily during training

҆Slowly decrease the amount of noise as training 
progress

10Reinforcement Learning Tutorial



RL Environment

• OpenAI Gym standards
҆https://github.com/openai/gym/blob/master/gym/core.py
҆Env base class

class Env(Generic[ObsType, ActType]):
def __init__()
def step(self, action: ActType) -> Tuple[new_state, reward, done, info]:
def reset(self, *) -> Tuple[state, info]:
def render(self) -> Optional[Union[RenderFrame, List[RenderFrame]]]:
def close(self) [Necessary cleanup]

11Reinforcement Learning Tutorial

https://github.com/openai/gym/blob/master/gym/core.py


CartPole OpenAI gym environment

12

The action is a ndarray with shape (1,) which can take values {0, 1} indicating the direction of 
the fixed force the cart is pushed with.

The observation is a ndarray with shape (4,) 
with the values corresponding to the 
following positions and velocities:

Since the goal is to keep the pole upright for 
as long as possible, a reward of +1 for every 
step taken, including the termination step, is 
allotted.

1.Termination: Pole Angle is greater than ±12°
2.Termination: Cart Position is greater than ±2.4 
(center of the cart reaches the edge of the display)
3.Truncation: Episode length is greater than 500 
(200 for v0)

Reinforcement Learning Tutorial



GMPS Regulator environment

13

Fermilab Site

Booster ring

Courtesy: Christian Herwig

The Booster receives the 400 MeV 
(kinetic energy) beam from the Linac

It is then accelerated to 8GeV with the 
help of booster cavities and Combined-
function bending and focusing 
electromagnets known as gradient 
magnets.

These magnets are powered by the 
gradient magnet power supply (GMPS)

• Other high-current, high-power electrical loads near GMPS varies in time 

• Causing unwanted fluctuations of the actual GMPS electrical current and thus fluctuations of the magnetic 
field in the Booster gradient magnets

• Spread in B-field degrades beam quality, degrades repeatability, & contributes to losses

• A GMPS regulator is required to calculate and apply small compensating offsets in the GMPS driving signal

• A RL agent can be trained to learn an optimal regulator, focusing on reducing the errors

B:LINFRQ = 60 Hz line frequency error [mHz]
I:IB = MI lower bend current [A]
I:MDAT40 = MDAT measured MI current [A]

B_VIMIN = Setting to achieve*
B:VIMIN = Prescribed remedy from PID regulator circuit
B:IMINER = 10*(Setting - obsMax)

Variables considered to construct env states

Reinforcement Learning Tutorial



14

GMPS Regulator environment

LSTM Surrogate Model

B:IMINER 
B:LINFRQ
B:VIMIN
B_VIMIN
I:IB  
I:MDAT40

next
B:IMINER 

Last 150 
timesteps

Next 
Timestep

Agent adjusts B:VIMIN
(Other variables continue to draw from data)

Reinforcement Learning Tutorial

Environment Setup

• Environment uses LSTM surrogate model to predict next IMINER using last 150 timesteps 
on all 6 variables

• Agent updates VIMIN (Action: delta VIMIN)

• To build next state the time series is shifted by one and VIMIN, and IMINER are updated as 
per action and surrogate prediction respectively

• Reward is  (-1 * IMINER) since the goal is to minimize IMINER

https://arxiv.org/pdf/2105.12847.pdf

https://arxiv.org/pdf/2105.12847.pdf


Resources

• Make your own custom environment 
https://www.gymlibrary.dev/content/environment_creation/

• Agent libraries
҆Stable-baseline

• https://stable-baselines.readthedocs.io/en/master/
҆TF-agents

• https://www.tensorflow.org/agents

• Readings
҆Deep Reinforcement Learning with Double Q-learning

• Tutorial code: https://github.com/JeffersonLab/jlab_datascience_tutorial

15Reinforcement Learning Tutorial

https://www.gymlibrary.dev/content/environment_creation/
https://stable-baselines.readthedocs.io/en/master/
https://www.tensorflow.org/agents
https://github.com/JeffersonLab/jlab_datascience_tutorial


BACKUP

16Reinforcement Learning Tutorial



Deep Deterministic Policy Gradient (DDPG)

Reinforcement Learning Tutorial 17

Critic is used to approximate the value function, trained using the following loss function

EnvironmentAction (a)

State (s)

Actor Critic

Buffer
(s, a, r, s’, d) 

batch(s, a, r, s’, d) 
Target 
Actor

Target 
Critic

Target network is used to approximate 

As both critic and target critic networks depends on same parameters !, target network is 
updated with a time delay as

0 < " < 1

Policy learning #$



18

Surrogate 
ModelLast 150 timesteps

Agent

State: one timestep

Update VIMIN

Next IMINER

Shift by one, update IMINER Next State

Action: next VIMIN

Reinforcement Learning Tutorial


