Xopt: Flexible Black Box Optimization of Simulations and Experiments

Ryan Roussel

rroussel@slac.stanford.edu

What is Xopt?

- Flexible framework for optimization of arbitrary problems using python
- Independent of problem type (simulation or experiment)
- Independent of optimization algorithm + easy to incorporate custom algorithms
- Easy to use text interface and/or advanced customized use for professionals

Xopt structure

-SLAC

Xopt input

SLAC

Via YAML file (validated by pydantic):

xopt:

max_evaluations: 6400

generator:

name: cnsga
population_size: 64
population_file: test.csv
output_path: .

evaluator:

function: xopt.resources.test_functions.tnk.evaluate_TNK
function_kwargs:
 raise_probability: 0.1

vocs:

```
variables:
    x1: [0, 3.14159]
    x2: [0, 3.14159]
objectives: {y1: MINIMIZE, y2: MINIMIZE}
constraints:
    c1: [GREATER_THAN, 0]
    c2: [LESS_THAN, 0.5]
linked_variables: {x9: x1}
constants: {a: dummy_constant}
```

Via python code:

evaluator = Evaluator(...) generator = CNSGAGenerator(...) vocs = MyVOCS(...)

```
X = Xopt(
evaluator=evaluator,
generator=generator,
vocs=vocs
```

Evaluator specification

- Python function must accept/return dicts
- Input dict must have at least the keys specified in vocs variables/constants (see next slide)
 - You can include extra keyword args if needed!
- Output dict must have at least the keys specified in objectives/constraints (see next slide)
 - The function can output extra keys to be tracked!
- Evaluators inherit directly from python concurrent.futures so you can use this for parallel evaluation (see /xopt/docs/examples/basic/xopt_parallel)

c1: [GREATER THAN, 0]

c2: [LESS THAN, 0.5]

linked_variables: {x9: x1}
constants: {a: dummy constant}

Evaluator specification

- Python function must accept/return dicts
- Input dict must have at least the keys specified in vocs variables/constants (see next slide)
 - You can include extra keyword args if needed!
- Output dict must have at least the keys specified in objectives/constraints (see next slide)
 - The function can output extra keys to be tracked!
- Evaluators inherit directly from python concurrent.futures so you can use this for parallel evaluation (see /xopt/docs/examples/basic/xopt_parallel)

evaluate(inputs: dict) -> dict

```
from epics import caget, caput, cainfo
import time
```

```
outputs = ["XRMS","YRMS"]
def make_epics_measurement(input_dict):
    # set inputs
    for name, val in input_dict.items():
        caput(name, val)
```

```
# wait for inputs to settle
time.sleep(1)
```

```
# get output values, current time
output_dict = caget_many(outputs)
output_dict["time"] = time.time()
```

```
# compute geometeric avg of beamsizes
output_dict["RMS"] = (
   output_dict["XRMS"]*\
   output_dict["YRMS"]
)**0.5
```

VOCS Specification

- Variables: input domain limits and names
- Objectives: objective names and goals (minimize/maximize)
- Constraints: constraint names and conditions (greater than/less than)
- Constants: constant values

xopt: max evaluations: 6400 generator: name: cnsga population size: 64 population_file: test.csv output path: . evaluator: function: xopt.resources.test functions.tnk.evaluate TNK function kwargs: raise probability: 0.1 vocs: variables: x1: [0, 3.14159] x2: [0, 3.14159] objectives: {v1: MINIMIZE, v2: MINIMIZE} constraints: c1: [GREATER THAN, 0]

```
c2: [LESS_THAN, 0.5]
linked_variables: {x9: x1}
constants: {a: dummy_constant}
```

Generator specification

Use built-in generators by name

- optimization algorithms:
 - cnsga Continuous NSGA-II with constraints.
 - o bayesian_optimization Single objective Bayesian optimization (w/ or w/o constraints, serial or parallel).
 - mobo Multi-objective Bayesian optimization (w/ or w/o constraints, serial or parallel).
 - bayesian_exploration Bayesian exploration.
- sampling algorithms:
 - o random sampler
- Each generator has its own specific options
- Locate the default options in the docs or via

```
from xopt.utils import get_generator_and_defaults
gen, options = get_generator_and_defaults("upper_confidence_bound")
print(yaml.dump(options.dict()))
```

acq:

```
beta: 2.0
monte_carlo_samples: 512
proximal_lengthscales: null
model:
use_conservative_prior_lengthscale: false
use_low_noise_prior: false
n_initial: 3
optim:
num_restarts: 5
raw_samples: 20
sequential: true
```

xopt:

max_evaluations: 6400

generator:

name: cnsga
population_size: 64
population_file: test.csv
output_path: .

```
evaluator:
```

function: xopt.resources.test_functions.tnk.evaluate_TNK
function_kwargs:
 raise_probability: 0.1

vocs:

variables: x1: [0, 3.14159] x2: [0, 3.14159] objectives: {y1: MINIMIZE, y2: MINIMIZE} constraints: c1: [GREATER_THAN, 0] c2: [LESS_THAN, 0.5] linked_variables: {x9: x1} constants: {a: dummy constant}

Data storage

- Data is stored by xopt in the `data` attribute
- Set dump_file in xopt options to dump data and xopt config to yaml file after every evaluation step
- Dump file can be used to restart xopt

SLAC

x.	data									
	x1	x2	y1	y2	c1	c2	some_array	xopt_error	xopt_error_str	а
1	1.000000	0.750000	1.000000	0.750000	0.626888	0.312500	[1, 2, 3]	False		NaN
2	0.750000	1.000000	0.750000	1.000000	0.626888	0.312500	[1, 2, 3]	False		NaN
3	0.796389	0.807321	0.796389	0.807321	0.186596	0.182292	[1, 2, 3]	False		dummy_constant
4	0.871085	0.943368	0.871085	0.943368	0.568348	0.334279	[1, 2, 3]	False		dummy_constant
5	1.067732	0.797750	1.067732	0.797750	0.843056	0.410974	[1, 2, 3]	False		dummy_constant
6	0.995019	0.879029	0.995019	0.879029	0.707805	0.388707	[1, 2, 3]	False		dummy_constant
7	0.803822	1.022336	0.803822	1.022336	0.724145	0.365142	[1, 2, 3]	False		dummy_constant
8	0.656282	0.952071	0.656282	0.952071	0.434474	0.228792	[1, 2, 3]	False		dummy_constant
9	0.566763	0.935263	0.566763	0.935263	0.271920	0.193911	[1, 2, 3]	False		dummy_constant
10	0.547152	1.008562	0.547152	1.008562	0.326474	0.260859	[1, 2, 3]	False		dummy_constant
11	0.617813	1.081140	0.617813	1.081140	0.594283	0.351603	[1, 2, 3]	False		dummy_constant
12	0.491363	1.027666	0.491363	1.027666	0.231751	0.278506	[1, 2, 3]	False		dummy_constant

. dump_file: dump.yam

view the date

Example Application: LCLS FEL Power Characterization

- Proximal biasing to reduce exploration step size and constraints to prevent charge loss.
- Custom evaluate function captures 80th percentile FEL power over 100 shots.
- Data stored in Pandas DataFrame objects, exported to text file with Xopt configuration
- FEL sensitivity is captured in the GP model lengthscales inside the generator object.
- Entirely executed from an interactive Jupyter notebook.

Badger: Missing Optimizer in the Accelerator Control Room

Zhe Zhang

zhezhang@slac.stanford.edu

What is Badger?

- Optimization interface between users and machine, the spiritual successor to <u>Ocelot-</u> <u>optimizer</u>, powered by <u>Xopt</u>
- Easy to use one click/cmd to re-run an optimization task
- Fast to extend plugin-based, create your own custom environment in minutes
- Multiple modes use Badger as a python library, a command line tool, or a GUI application

What can Badger do?

- General features
 - Control the optimization flow (pause/resume/terminate)
 - Monitor/browse the runs
 - Archive/explore the data
- Accelerator control room (ACR) oriented features
 - Send run summary to the logbook
 - Jump/set to optimal solution
 - Recover machine state after run
 - Support soft/hard constraints & tracked states
 - Preserve all raw data
 - *Continue/rollback a run (planned)

Badger architecture

Badger architecture

- **Generator** algorithms provided by Xopt
- Environment defines the observations and the variables
- Interface layer between the environment and the machine, all data in a run would flow through the interface
- Routine contains complete information
 about one optimization task

GUI mode (browse/run a routine)

GUI mode (create/edit/view a routine)

-SLAC

CLI mode

- badger to get general information
- badger algo/env/intf to list all the algorithms/environments/interfaces
- badger algo/env/intf NAME to investigate a specific plugin
- badger routine to list all saved routines
- badger routine NAME to review the routine
- badger routine NAME -r to run the routine
- badger run to create and run a routine
- **badger install env/intf** to list/install the environment/interface plugins

🔊 ~ badge	r routine intf	-log -r			
Please rev	iew the routin	e to be run:			
=== Optimi	zation Routine				
name: intf	-log				
algo: sill					
env: silly					
algo_param					
start_fr	om_current: tr	ue			
max_iter	: 42				
env_params					
variable					
- a1:	0.0 -> 1.0				
- q2:	0.0 -> 1.0				
- q3:	0.0 -> 1.0				
- q4:	0.0 -> 1.0				
objectiv	es:				
- 12:	MINIMIZE				
constrai	nts: null				
domain s	calina: null				
Proceed ([y]/n)?				
iter			I qZ		I Q4
iter 1		∣ q⊥ 0.0	I q2 I 0.0		I 94
iter 1 2	I 0.0 I 1.372	I 0.0 0.8838	I 92 I 0.0 I 0.6329	q3 0.0 0.07155	I 0.0 I 0.8343
iter 1 2 3	I 12 I 0.0 I 1.372 I 0.864	0.0 0.8838 0.2203	I q2 I 0.0 I 0.6329 I 0.7632	q3 0.0 0.07155 0.07581	I 0.0 I 0.8343 I 0.3312
iter 1 2 3 4	I 0.0 I 1.372 I 0.864 I 1.384	q1 0.0 0.8838 0.2203 0.06517	I q2 I 0.0 I 0.6329 I 0.7632 I 0.4959	q3 0.0 0.07155 0.07581 0.9432	0.0 0.8343 0.3312 0.8809
iter 1 2 3 4 5	1.2 0.0 1.372 0.864 1.384 1.043	q1 0.0 0.8838 0.2203 0.06517 0.1173	q2 0.0 0.6329 0.7632 0.4959 0.2418	q3 0.0 0.07155 0.07581 0.9432 0.6492	q4 0.0 0.8343 0.3312 0.8809 0.7702
iter 1 2 3 4 5 6 7	1.2 0.0 1.372 0.864 1.384 1.043 1.172	0.0 0.8838 0.2203 0.06517 0.1173 0.05347	I q2 I 0.0 I 0.6329 I 0.7632 I 0.4959 I 0.2418 I 0.6336 I 0.7553	q3 0.0 0.07155 0.07581 0.9432 0.6492 0.9677 0.6421	0.0 0.8343 0.3312 0.8809 0.7702 0.182
iter 1 2 3 4 5 6 7 8	L2 0.0 1.372 0.864 1.384 1.043 1.172 1.606 0.6892	0.0 0.8838 0.2203 0.06517 0.1173 0.05347 0.9123 0.3282	I q2 I 0.0 I 0.6329 I 0.7632 I 0.4959 I 0.2418 I 0.6336 I 0.7953 I 0.254	q3 0.0 0.07155 0.07581 0.9432 0.6492 0.9677 0.6401	I 0,0 I 0.8343 I 0.3312 I 0.8809 I 0.7702 I 0.182 I 0.839 I 0.587
iter 1 2 3 4 5 6 7 8 9	0.0 1.372 0.864 1.384 1.043 1.172 1.606 0.6882 0.5209	0.0 0.8838 0.2203 0.06517 0.1173 0.05347 0.9123 0.3282 0.128	I 92 I 0.0 I 0.6329 I 0.7632 I 0.7632 I 0.2418 I 0.6336 I 0.7953 I 0.2254 I 0.04482	q3 0.0 0.07155 0.07581 0.9432 0.6492 0.9677 0.6401 0.05388 0.4601	I 94 I 0.0 I 0.8343 I 0.3312 I 0.8809 I 0.7702 I 0.182 I 0.839 I 0.5587 I 0.203
iter 1 2 3 4 5 6 7 8 9 10	0.0 1.372 0.864 1.384 1.043 1.172 1.606 0.6882 0.5209 1.305	0.0 0.8838 0.2203 0.06517 0.1173 0.05347 0.9123 0.3282 0.128 0.128	I 92 I 0.0 I 0.6329 I 0.7632 I 0.4959 I 0.2418 I 0.6336 I 0.7953 I 0.2254 I 0.04482 I 0.04482 I 0.9853	q3 0.0 0.07155 0.07581 0.9432 0.6492 0.9677 0.6401 0.05388 0.4601 0.066447	I 0.0 I 0.8343 I 0.3312 I 0.8809 I 0.7702 I 0.182 I 0.839 I 0.5587 I 0.203 I 0.4321
iter 1 2 3 4 5 6 7 8 9 10 11	I 0.0 I 1.372 I 0.864 I 1.384 I 1.043 I 1.172 I 1.606 I 0.6882 I 0.5209 I 1.305 I 1.378	0.0 0.8838 0.2203 0.06517 0.1173 0.05347 0.9123 0.3282 0.128 0.7387 0.5078	I 0.0 I 0.6329 I 0.7632 I 0.4959 I 0.2418 I 0.6336 I 0.7953 I 0.2254 I 0.04482 I 0.9853 I 0.2893	I q3 I 0.0 I 0.07155 I 0.07581 I 0.9432 I 0.6492 I 0.6492 I 0.6401 I 0.05388 I 0.4601 I 0.006447 I 0.7706	q4 0.0 0.8343 0.3312 0.8809 0.7702 0.182 0.839 0.5587 0.203 0.4321 0.9816
iter 	0.0 1.372 0.864 1.384 1.043 1.172 1.606 0.6882 0.5209 1.305 1.378 1.206	I q1 I 0.0 I 0.8838 I 0.2203 I 0.06517 I 0.1173 I 0.05347 I 0.9123 I 0.3282 I 0.7387 I 0.5078 I 0.5078 I 0.1058	I 0.0 I 0.6329 I 0.7632 I 0.7632 I 0.2418 I 0.6336 I 0.7953 I 0.2254 I 0.04482 I 0.9853 I 0.2893 I 0.2893 I 0.5512	I q3 I 0.0 I 0.07155 I 0.07581 I 0.9432 I 0.6492 I 0.9677 I 0.6401 I 0.905388 I 0.4601 I 0.006447 I 0.7706 I 0.8389	I q4 I 0.0 I 0.8343 I 0.3312 I 0.8809 I 0.7702 I 0.8809 I 0.7702 I 0.839 I 0.5587 I 0.203 I 0.4321 I 0.9816 I 0.6024
iter - 1 1 2 3 4 5 6 7 8 9 10 11 12 13	0.0 1.372 0.864 1.384 1.043 1.172 1.606 0.6882 0.5209 1.305 1.378 1.206 1.272	41 0.0 0.8838 0.2203 0.06517 0.1173 0.05347 0.9123 0.3282 0.128 0.7387 0.5078 0.5078 0.8485	I 42 I 0.0 I 0.6329 I 0.7632 I 0.4959 I 0.2418 I 0.6336 I 0.7953 I 0.2254 I 0.9853 I 0.9853 I 0.2893 I 0.2893 I 0.2893 I 0.1888	I q3 I 0.0 I 0.07155 I 0.9781 I 0.9432 I 0.6492 I 0.6492 I 0.6491 I 0.9677 I 0.6401 I 0.06447 I 0.066447 I 0.7706 I 0.8809 I 0.2665	q4 0.0 0.8343 0.3312 0.8809 0.7702 0.8809 0.7702 0.889 0.5587 0.5587 0.4321 0.9816 0.6024 0.6024 0.8337
iter 	0.0 1.372 0.864 1.843 1.172 1.606 0.6882 0.5209 1.305 1.378 1.272 1.287	1 41 0.0 0.8838 0.2203 0.06517 0.1173 0.05347 0.3282 0.3282 0.128 0.7387 0.05078 0.05578 0.0588 0.8888	I 0.0 I 0.6329 I 0.7632 I 0.4959 I 0.2418 I 0.6336 I 0.7953 I 0.2254 I 0.04482 I 0.9453 I 0.2893 I 0.5512 I 0.1888 I 0.8435	I q3 I 0.0 I 0.07155 I 0.07581 I 0.9432 I 0.6492 I 0.6491 I 0.4641 I 0.06647 I 0.006447 I 0.8809 I 0.8809 I 0.2865 I 0.3678	q4 0.0 0.8343 0.3312 0.8809 0.7702 0.182 0.839 0.203 0.203 0.4321 0.6024 0.8337 0.2327
iter 	0.0 1.372 0.864 1.384 1.043 1.172 1.606 0.6882 0.5209 1.378 1.378 1.206 1.272 1.287 1.579 1.579	1 41 0 0 1 0.8838 0.2203 0 1 0.6517 1 0.1173 1 0.9123 1 0.3282 1 0.7387 1 0.7387 1 0.5078 1 0.1058 1 0.8688 1 0.7412	I q2 I 0.6329 I 0.7632 I 0.4959 I 0.2418 I 0.6336 I 0.7953 I 0.2254 I 0.9853 I 0.2893 I 0.5512 I 0.8435 I 0.5127 I 0.8435 I 0.8435	q3 I 0.0 I 0.07155 I 0.9432 I 0.9432 I 0.9432 I 0.9432 I 0.9432 I 0.9577 I 0.6491 I 0.9538 I 0.4601 I 0.96647 I 0.7865 I 0.7678 I 0.8937 I 0.8937	1 44 1 0.8143 1 0.8343 1 0.3312 1 0.8809 1 0.7702 1 0.8809 1 0.7702 1 0.8309 1 0.5587 1 0.203 1 0.4321 1 0.9816 1 0.6024 1 0.2327 1 0.9358
iter 	0.0 1.372 0.864 1.943 1.172 1.606 0.6882 0.5209 1.305 1.378 1.272 1.272 1.277 1.579 1.295	1 41 0 0 0 838 0.2203 0 1 0.06517 1 0.173 0 0.5347 0 9123 0 1.282 0 1.282 0 1.282 0 5.078 0 8.058 0 8.485 0 8.688 0 7.412 0 6.823	I q2 I 0.0 I 0.6329 I 0.7632 I 0.2418 I 0.6336 I 0.2254 I 0.0254 I 0.2893 I 0.2893 I 0.2893 I 0.2893 I 0.5512 I 0.8435 I 0.8435 I 0.8435 I 0.5197 I 0.1887	q3 0	1 q4 1 0.8343 1 0.8343 1 0.3312 1 0.8809 1 0.7702 1 0.7702 1 0.8309 1 0.5587 1 0.2831 1 0.9816 1 0.9816 1 0.6024 1 0.2327 1 0.2358 1 0.9358 1 0.9358 1 0.9358 1 0.9358
iter 	12 0.0 1.372 0.864 1.884 1.043 1.172 1.606 0.6882 0.5209 1.305 1.378 1.272 1.287 1.275 1.287 1.295 1.318	1 41 0 0 0 838 0 2203 1 0.06517 1 0.173 0 0.5347 0 9.123 1 0.2822 0 1.28 0 7.387 0 5078 0 1.058 0 8.485 0 8.485 0 8.682 0 7.412 0 6.625 0 6.172	1 42 1 0.6329 1 0.7632 1 0.7632 1 0.7632 1 0.7633 1 0.7253 1 0.7253 1 0.2254 1 0.9853 1 0.5512 1 0.5512 1 0.5137 1 0.5137 1 0.15847 1 0.15847 1 0.15847	q3 0.0 0.07155 0.07581 0.9432 0.6492 0.6491 0.06647 0.06647 0.8809 0.2865 0.3678 0.3678 0.7664 0.7766 0.7865 0.3678 0.3678 0.76444 0.7658 0.3678 0.3678 0.76444 0.7684 0.7685	44 0.0 0.8343 0.3312 0.8809 0.8809 0.702 0.182 0.839 0.702 0.182 0.5587 0.203 0.4321 0.9316 0.0624 0.9358 0.9358 0.9351 0.9381 0.9358 0.9351 0.9351
iter 	12 0.0 1.372 0.864 1.084 1.043 1.172 1.606 0.6882 0.5209 1.305 1.378 1.272 1.287 1.579 1.287 1.579 1.318 0.42 1.462	1 41 1 0.0 1 8.838 0.2203 0.06517 1 0.1173 1 0.05317 1 0.123 1 0.3282 1 0.7387 1 0.5078 1 0.7387 1 0.5678 1 0.7387 1 0.5678 1 0.5678 1 0.6828 1 0.7387 1 0.6625 1 0.6625 1 0.6742 1 0.3756 1 0.3757	1 42 1 0.0 1 0.6329 1 0.7632 1 0.7633 1 0.2418 1 0.6336 1 0.7953 1 0.2254 1 0.9853 1 0.2893 1 0.2893 1 0.5512 1 0.1883 1 0.5197 1 0.1834 1 0.04845	q3 0.0 0.07155 0.07155 0.07155 0.07155 0.0432 0.9677 0.9677 0.4641 0.0588 0.4601 0.0588 0.4601 0.066447 0.2665 0.3678 0.3678 0.5444 0.7868 0.1375 0.1375 0.1375 0.1375	44 0.0 0.8343 0.3312 0.8809 0.702 0.182 0.203 0.203 0.4321 0.8809 0.203 0.203 0.4321 0.8421 0.8624 0.8839 0.3312 0.3312 0.3314 0.9816 0.9816 0.9358 0.9358 0.9358 0.1187 0.9011
iter 	<pre>1 12 0.0 1.372 0.864 1.384 1.043 1.172 1.606 0.6882 0.5209 1.305 1.305 1.277 1.277 1.277 1.277 1.277 1.279 1.295 1.318 0.42 1.461</pre>	1 41 1 0.838 1 0.203 1 0.6517 1 0.1173 1 0.9123 1 0.3282 1 0.3282 1 0.5078 1 0.5078 1 0.5078 1 0.5678 1 0.5678 1 0.5678 1 0.5678 1 0.5678 1 0.5775 1 0.5376 1 0.3577 1 0.3577 1 0.3577 1 0.3577	1 42 1 0.6329 1 0.6329 1 0.7632 1 0.7632 1 0.7633 1 0.2418 1 0.6336 1 0.7953 1 0.2254 1 0.9853 1 0.22833 1 0.2893 1 0.5512 1 0.1534 1 0.1534 1 0.1534 1 0.2782 1 0.2782 1 0.2784 1 0.63849 1 0.2782 1 0.1534	1 q3 1 0.0 1 0.7155 1 0.97155 1 0.9432 1 0.6492 1 0.6492 1 0.9637 1 0.66421 1 0.06647 1 0.70646 1 0.7865 1 0.7865 1 0.7868 1 0.7864 1 0.7864 1 0.7864 1 0.7864 1 0.7864 1 0.7864 1 0.7864 1 0.7864 1 0.7864 1 0.7864 1 0.7864 1 0.7864 1 0.7864 1 0.7864 1 0.7864 1 0.7864 1 0.7864 1 0.9826 1 0.9826 <	44 0.0 0.8343 0.3312 0.8809 0.7702 0.182 0.839 0.233 0.182 0.839 0.233 0.182 0.839 0.233 0.4321 0.9316 0.6024 0.8357 0.9358 0.9358 0.3431 0.8455 0.1187 0.9311 0.8455 0.9311 0.8455 0.9311 0.8455 0.9311 0.8455 0.9311 0.8455 0.9311 0.8455
iter 	12 0.0 1.372 0.864 1.884 1.043 1.172 1.606 0.6882 0.5209 1.305 1.378 1.206 1.272 1.287 1.275 1.318 0.42 1.467 1.467 1.467	q1 0.0 0.838 0.2203 0.96517 0.95347 0.95347 0.95347 0.9282 0.173 0.9282 0.128 0.787 0.128 0.7887 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.128 0.127 0.3756 0.3777 0.8778	q2 0.62 0.7632 0.7632 0.7633 0.4536 0.2541 0.4536 0.2541 0.7632 0.7632 0.2418 0.2541 0.2551 0.2893 0.5512 0.1888 0.4849 0.1534 0.2541 0.1534 0.2724	q3 0.0 0.07155 0.07155 0.07155 0.07155 0.07155 0.07155 0.07155 0.07155 0.07155 0.07155 0.07155 0.0677 0.06401 0.06847 0.7706 0.8309 0.2865 0.3678 0.3678 0.3678 0.3678 0.3778 0.5444 0.7865 0.3826 0.9771 0.6577	q4 0.0 0.8343 0.3312 0.8343 0.3312 0.889 0.762 0.182 0.839 0.832 1 0.832 1 0.833 1 0.4321 1 0.9614 1 0.9614 1 0.9614 0.358 0.3588 1 0.9358 1 0.9358 1 0.9358 1 0.9358 1 0.9358 1 0.9358 1 0.9358 1 0.9358 1 0.9358 1 0.9358 1 0.9358 1 0.9358 1 0.9358 1 0.9358 1 0.9369

API mode

- Use get_algo to get an algorithm
 - Unified user interface/consistent user experience
 - No need to deal with algorithm setup

Use get_env to load an environment

- Set variables to the environment and get observations from it
- Embed the env in the workflow
- No need to setup the simulation/experiment configs again and again

```
•[1]: from badger.factory import get_env, get_algo
     Environment, configs = get_env('inj_surrogate')
     env = Environment(configs['params'], None)
     env.load model()
     def target(x, t):
          # x is normalized
          _X = denorm(torch.hstack((drift(t), mapping_x(x))))
         ref_point = torch.from_numpy(env.ref_point[0]).to(dtype)
         X in = ref point, repeat(len(t), 1)
          indices = [env.model.loc in[var] for var in list vars]
         X in[:, indices] = X
         Y_out = torch.from_numpy(env.model.pred_machine_units(X_in))
         y_1 = Y_out[:, env.model.loc_out['sigma_x']] * 1e3
         y_2 = Y_out[:, env.model.loc_out['sigma_y']] * 1e3
         y = y_1
         return y.reshape(-1, 1)
```


Create a custom environment

- Think about a list of variables/observations that could be involved in your optimization problem
 - Variables are the tuning knobs
 - Observations are the measurements including objectives, constraints, or system states to be tracked
- Inherit the base Environment class and implements:
 - name name of the environment
 - list_vars return a list of all the variables
 - list_obses return a list of all the observations
 - _get_var get the current value of the variable
 - _set_var set the variable to the given value
 - _get_obs get the current value of the observation

class Environment(ABC):

@property
@abstractmethod
def name(self) -> str:
 pass

@abstractmethod
def __init__(self, interface: Interface, params=None):
 self.interface = interface
 self.params = merge_params(self.get_default_params(), params)

List all available variables

@staticmethod
@abstractmethod
def list_vars() -> List[str]:
 pass

List all available observations

@staticmethod
@abstractmethod
def list_obses() -> List[str]:
 pass

Get current variab

Unsafe version (var won't be checked beforehand) @abstractmethod def _get_var(self, var: str): pass

Set variable

Unsafe version
@abstractmethod
def _set_var(self, var: str, x):
 pass

for more information, please check out <u>https://slac-ml.github.io/Badger/docs/getting-started/installation</u>

Tutorial

Run and save an optimization

Create a yaml file under your pwd (where you would run an optimization with Badger) with the following content:

for more information, please check out https://slac-ml.github.io/Badger/docs/getting-started/tutorial

Hit return to confirm. Badger will print out a table of all the evaluated solutions along the run:

Badger resources

- Badger homepage
 <u>https://slac-ml.github.io/Badger/</u>
- Badger core
 <u>https://github.com/SLAC-ML/Badger</u>
- Badger plugins
 <u>https://github.com/SLAC-ML/Badger-Plugins</u>
- Badger hands-on
 <u>https://github.com/SLAC-ML/Badger-Handson</u>
- Badger on PyPI
 <u>https://pypi.org/project/badger-opt/</u>
- Badger on conda
 <u>https://anaconda.org/conda-forge/badger-opt</u>
- Badger on Slack <u>#badger</u> <u>#badger-handsome</u>

Twitter 🗗