
Xopt: Flexible Black Box Optimization 

of Simulations and Experiments
Ryan Roussel
rroussel@slac.stanford.edu



2

What is Xopt?

- Flexible framework for 

optimization of arbitrary problems 

using python

- Independent of problem type 

(simulation or experiment)

- Independent of optimization 

algorithm + easy to incorporate 

custom algorithms

- Easy to use text interface and/or 

advanced customized use for 

professionals



3

Xopt structure



4

Xopt usage



5

Xopt input

Via YAML file (validated by pydantic): Via python code:

evaluator = Evaluator(…)

generator = CNSGAGenerator(…)

vocs = MyVOCS(…)

X = Xopt(
evaluator=evaluator, 

generator=generator, 

vocs=vocs

)



6

Evaluator specification

• Python function must accept/return dicts

• Input dict must have at least the keys 

specified in vocs variables/constants (see 

next slide)

• You can include extra keyword args if 

needed!

• Output dict must have at least the keys 

specified in objectives/constraints (see 

next slide)

• The function can output extra keys to 
be tracked!

• Evaluators inherit directly from python 

concurrent.futures so you can use this for 

parallel evaluation (see 

/xopt/docs/examples/basic/xopt_parallel)



7

Evaluator specification

• Python function must accept/return dicts

• Input dict must have at least the keys 

specified in vocs variables/constants (see 

next slide)

• You can include extra keyword args if 

needed!

• Output dict must have at least the keys 

specified in objectives/constraints (see 

next slide)

• The function can output extra keys to 
be tracked!

• Evaluators inherit directly from python 

concurrent.futures so you can use this for 

parallel evaluation (see 

/xopt/docs/examples/basic/xopt_parallel)



8

VOCS Specification

• Variables: input domain 

limits and names

• Objectives: objective names 

and goals 

(minimize/maximize)

• Constraints: constraint 

names and conditions 

(greater than/less than)

• Constants: constant values



9

Generator specification

• Use built-in generators by name

• Each generator has its own specific options

• Locate the default options in the docs or via 



10

Data storage

• Data is stored by xopt in 

the `data` attribute

• Set dump_file in xopt

options to dump data and 

xopt config to yaml file 

after every evaluation 

step

• Dump file can be used to 

restart xopt



11

Example Application: LCLS FEL Power Characterization

• Proximal biasing to reduce exploration step size and constraints to prevent charge 

loss.

• Custom evaluate function captures 80th percentile FEL power over 100 shots.

• Data stored in Pandas DataFrame objects, exported to text file with Xopt configuration

• FEL sensitivity is captured in the GP model lengthscales inside the generator object.

• Entirely executed from an interactive Jupyter notebook.



Badger: Missing Optimizer in the 

Accelerator Control Room
Zhe Zhang
zhezhang@slac.stanford.edu



13

What is Badger?

• Optimization interface between 

users and machine, the 

spiritual successor to Ocelot-

optimizer, powered by Xopt

• Easy to use one click/cmd to re-run 

an optimization task

• Fast to extend plugin-based, create 

your own custom environment in 

minutes

• Multiple modes use Badger as a 

python library, a command line tool, or 

a GUI application

https://github.com/ocelot-collab/optimizer
https://github.com/ChristopherMayes/Xopt


14

What can Badger do?

• General features

• Control the optimization flow 

(pause/resume/terminate)

• Monitor/browse the runs

• Archive/explore the data

• Accelerator control room (ACR) oriented 

features

• Send run summary to the logbook

• Jump/set to optimal solution

• Recover machine state after run

• Support soft/hard constraints & tracked states

• Preserve all raw data

• *Continue/rollback a run (planned)



15

Badger architecture



16

Badger architecture

• Generator algorithms provided by Xopt

• Environment defines the observations and 

the variables

• Interface layer between the environment 

and the machine, all data in a run would 

flow through the interface

• Routine contains complete information 

about one optimization task



17

GUI mode (browse/run a routine)

Search bar

Routine filters

Routine list

Historical run 

navigator

Run monitor

Data browser

Control bar



18

GUI mode (create/edit/view a routine)

Algorithm configs

Routine configs

Environment/VOCS 

configs



CLI mode

• badger to get general information

• badger algo/env/intf to list all the 

algorithms/environments/interfaces

• badger algo/env/intf NAME to investigate a specific plugin

• badger routine to list all saved routines

• badger routine NAME to review the routine

• badger routine NAME –r to run the routine

• badger run to create and run a routine

• badger install env/intf to list/install the 

environment/interface plugins

19



20

API mode

• Use get_algo to get an algorithm

• Unified user interface/consistent user 

experience

• No need to deal with algorithm setup

• Use get_env to load an environment

• Set variables to the environment and get 

observations from it

• Embed the env in the workflow

• No need to setup the simulation/experiment 

configs again and again



Create a custom environment

• Think about a list of variables/observations that 

could be involved in your optimization problem

• Variables are the tuning knobs

• Observations are the measurements – including objectives, 

constraints, or system states to be tracked

• Inherit the base Environment class and 

implements:

• name name of the environment

• list_vars return a list of all the variables

• list_obses return a list of all the observations

• _get_var get the current value of the variable

• _set_var set the variable to the given value

• _get_obs get the current value of the observation

21



22

Get started

pip install badger-opt

or

conda install badger-opt

then

badger –ga

for more information, please check out

https://slac-ml.github.io/Badger/docs/getting-started/installation

https://slac-ml.github.io/Badger/docs/getting-started/installation


23

Tutorial

for more information, please check out

https://slac-ml.github.io/Badger/docs/getting-started/tutorial



Badger resources

• Badger homepage

https://slac-ml.github.io/Badger/

• Badger core

https://github.com/SLAC-ML/Badger

• Badger plugins

https://github.com/SLAC-ML/Badger-Plugins

• Badger hands-on

https://github.com/SLAC-ML/Badger-Handson

• Badger on PyPI

https://pypi.org/project/badger-opt/

• Badger on conda

https://anaconda.org/conda-forge/badger-opt

• Badger on Slack

#badger

#badger-handsome

24

https://slac-ml.github.io/Badger/
https://github.com/SLAC-ML/Badger
https://github.com/SLAC-ML/Badger-Plugins
https://github.com/SLAC-ML/Badger-Handson
https://pypi.org/project/badger-opt/
https://anaconda.org/conda-forge/badger-opt
https://slac.slack.com/archives/C02AQS1EGB0
https://slac.slack.com/archives/C033CRE28LD

