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OUTLINE
QProgress on the ATLAS Al/ML Project.

JAutomated data collection established.

Bayesian Optimization used for online beam tuning.

QAIl / ML supporting the commissioning of the new AMIS beamline.
1BO from one beam to another.

BO with Deep Kernel Learning.

Reinforcement Learning for online beam tuning.
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ARGONNE TANDEM LINEAR ACCELERATOR SYSTEM

v/ 18t Superconducting heavy-ion linac in the world
v'It has been operating for over 35 years

v'National user facility serving ~ 400 users per year
v'Up to 17 MeV/nucleon
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THE ATLAS Al / ML PROJECT

Use of artificial intelligence to optimize accelerator operations and
improve machine performance

- Particle
—( Seiflie }—>{ accelerator —{ DPata ] v'Surrogate Models
1

v'Virtual Diagnostics
v'Tuning Control Model

( Information J Al Model |¢———— \/...
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PROGRESS ON THE ATLAS Al / ML PROJECT

Use of artificial intelligence to optimize accelerator operations
and improve machine performance

O At ATLAS, we switch ion beam species every 3-4 days ... = Using Al could
streamline beam tuning & help improve machine performance
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PROGRESS ON THE ATLAS Al / ML PROJECT

Use of artificial intelligence to optimize accelerator operations
and improve machine performance

O At ATLAS, we switch ion beam species every 3-4 days ... = Using Al could
streamline beam tuning & help improve machine performance

U The main project goals are:
o Data collection, organization and classification, towards a fully automated and
electronic data collection for both machine and beam data... established
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PROGRESS ON THE ATLAS Al / ML PROJECT

Use of artificial intelligence to optimize accelerator operations
and improve machine performance

O At ATLAS, we switch ion beam species every 3-4 days ... = Using Al could
streamline beam tuning & help improve machine performance

U The main project goals are:
o Data collection, organization and classification, towards a fully automated and
electronic data collection for both machine and beam data... established

o Online tuning model to optimize operations and shorten beam tuning time in order
to make more beam time available for the experimental program
... making progress
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PROGRESS ON THE ATLAS Al / ML PROJECT

Use of artificial intelligence to optimize accelerator operations
and improve machine performance

O At ATLAS, we switch ion beam species every 3-4 days ... = Using Al could
streamline beam tuning & help improve machine performance

U The main project goals are:
o Data collection, organization and classification, towards a fully automated and

electronic data collection for both machine and beam data... established

Online tuning model to optimize operations and shorten beam tuning time in order
to make more beam time available for the experimental program
... making progress

Virtual model to enhance our understanding of the machine behavior in order to improve
performance and optimize particular and new operating modes
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ATLAS - FIRST STEPS IN DATA COLLECTION

~80% time of a Data Scientist is Collecting Data, Cleaning and
Organizing Data

v" Kind of data?
v How much data?
v" Accessible?
v' Automated?
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AUTOMATED DATA COLLECTION ESTABLISHED

v" Beam currents and beam profiles digitized
v" A python interface developed to collect the data automatically

(S “
p— <}:| i
SERVER Control System
L ——

Schematic of data collection interface
Data collected Siin R = s "';f":u"":::
FCP201 FCP202 @ -

Elements:
read/set

digitized,
read

FC: digitized, insert, read
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ATLAS - DATA COLLECTION

GET: get all the data from the machine

LI Y=

POST: set new settings to the machine

L(((

Control System
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ATLAS - DATA COLLECTION

GET: get all the data from the machine Python

LI Y=

POST: set new settings to the machine

Control System

SIMULATION - DATA COLLECTION

v' Python wrapper for TRACK (Simulation Code) /~ Python Wrapper )
v' Generation of simulation data <::|

v’ Different conditions and inputs |:>

v’ Integration with modeling \_ J

gﬁ‘m"% U.S. DEPARTMENT OF  Argonne National Laboratory is a
L G U.S. Department of Energy laboratory
\Z/ENERGY .55 e

AAAAAAAAAAAAAAAAAAAAAAAAAAA



BAYESIAN OPTIMIZATION USED FOR BEAM TUNING

_ Settings | i
Accelerator

Bayesian Optimization
cquisitio Surrogate
Function Model

o Surrogate Model: A probabilistic model
approximating the objective function [Gaussian
Process with RBF Kernel and Gaussian likelihood]

o Acquisition Function tells the model where to
query the system next for more likely
improvement [El]

o Bayesian Optimization with Gaussian
Processes gives a reliable estimate of

uncertalnty and guldes the model
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BAYESIAN OPTIMIZATION USED FOR BEAM TUNING

Particle
Accelerator

Bayesian Optimization

cquisitio Surrogate
Function Model

\. J

o Surrogate Model: A probabilistic model
approximating the objective function [Gaussian
Process with RBF Kernel and Gaussian likelihood]

o Acquisition Function tells the model where to
query the system next for more likely
improvement [El]

o Bayesian Optimization with Gaussian
Processes gives a reliable estimate of

uncertalnty and guldes the model
(B ENERGY M52t 11

Configuration vs Transmission New vs. Old Settings
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o 7 varied parameters (3 quads + 2 steerers)

o Optimization of beam transmission

o Case of “N3*: 29 historical + 33 random tunes
o Case of 40Ar%* : 29 historical tunes
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Al/ML SUPPORTING AM

New Material Irradiation Station at ATLAS =

to
Booster

Triplet Magnet

ATLAS
Straight
Beamline

Filter

Low-energy heavy-ion beams ~ 1 MeV/u can
effectively emulate material damage in nuclear
reactors, in both fuel and structural materials.
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Transmission

Al/ML SUPPORTING AM

New Material Irradiation Station at ATLAS

Beam
to
| Booster

@ o 2 Triplt et
—890 0©O
@ - QO & *
@ 0 90 _ =
@ @ 0. _0F{ i

Straight
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Wien
Filter

Low-energy heavy-ion beams ~ 1 MeV/u can
effectively emulate material damage in nuclear
reactors, in both fuel and structural materials.

Improving Beam Transmission

Problem: Maximize beam transmission by varying a
triplet, two dipoles and two steerers [BO]; Results: 40 ->
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Transmission

Al/ML SUPPORTING AM

New Material Irradiation Station at ATLAS =

to
[] Booster
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Filter

Low-energy heavy-ion beams ~ 1 MeV/u can
effectively emulate material damage in nuclear
reactors, in both fuel and structural materials.

Improving Beam Transmission

Problem: Maximize beam transmission by varying a
triplet two dipoles and two steerers [BO]; Results: 40 >
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Improving Beam Profiles

Problem: Produce symmetric beam profiles by varying a
triplet and a steerer [BO]
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Training online, slow convergence but steady progress.
Competition between nice profiles and beam transmission!
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Very encouraging first results!
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MULTI-OBJECTIVE BAYESIAN OPTIMIZATION

Improving Beam Transmission

Problem: Maximize beam transmission by varying a
triplet, and a doublet [MOBO]; Results: 53 - 60%
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MULTI-OBJECTIVE BAYESIAN OPTIMIZATION

Improving Beam Transmission €= Improving Beam Profiles

Problem: Maximize beam transmission by varying a Problem: Produce symmetric beam profiles by varying a
triplet, and a doublet [MOBO]; Results: 53 - 60% triplet, and a doublet [MOBO]

Beam Symmetry vs Transmission - MOBO 50
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BO — TRANSFER FROM 160 BEAM TO 22NE BEAM

Improving Beam Transmission

Problem: Maximize beam transmission by varying a
triplet, and a doublet [BO]J; Results: 53 - 58%
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80 150 [BO]
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BO — TRANSFER FROM 160 BEAM TO 22NE BEAM

Improving Beam Transmission Improving Beam Transmission

Problem: Maximize beam transmission by varying a Problem: Maximize beam transmission by varying a
triplet, and a doublet [BO]J; Results: 53 =2 60% triplet, and a doublet [BO]; Results: 48 > 67%

Transmission through AMIS - From '°0 to 2 Ne
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BO WITH DEEP KERNEL LEARNING AT AMIS

» Deep kernel learning (DKL) aim to

neural networks with the reliable

processes.
Improving Beam Transmission

Problem: Maximize beam transmission by varying a
triplet [BO+DKL]; Results: 53 - 60%

- Simulation / \

- NN trained offline

i ) with TRACK [4k
simulations train
> Al Model

set /1k simulations

combine the representational power of
uncertainty estimates of Gaussian

for val set]
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BO WITH DEEP KERNEL

» Deep kernel learning (DKL) aim to c¢
neural networks with the reliable

processes.

Improving Beam Transmission

Problem: Maximize beam transmission by varying a

triplet [BO+DKL]; Results: 53 - 60%

(Coetings }—| “Code™
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> Al Model

NN trained offline
with TRACK [4k
simulations train
set /1k simulations
for val set]
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80
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Transmission through AMIS - 1°0 BO

—e— 150 [BO]
Initial Set - 20 Rand. Conf.

+ 160 [BO]
10 [Tuned beam]

AAAAAAAAAAAAAAAAAA



BO WITH DEEP KERNEL

» Deep kernel learning (DKL) aim to c¢
neural networks with the reliable

processes.

Improving Beam Transmission

Problem: Maximize beam transmission by varying
triplet [BO+DKL]; Results: 53 2> 56%

a

- Simulation /

A

NN trained offline
with TRACK [4k

simulations train
> AlModel set /1k simulations

for val set]
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BO+DKL — TRANSFER FROM 160 TO 22NE BEAM

Improving Beam Transmission

Problem: Maximize beam transmission by varying a
triplet [BO+DKL]; Results: 53 2> 56%

Transmission through AMIS - 10 with DKL
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BO+DKL — TRANSFER FROM 160 TO 22NE BEAM

[ [ [ L] [ [
Improving Beam Transmission Improving Beam Transmission
Problem: Maximize beam transmission by varying a Problem: Maximize beam transmission by varying a
triplet [BO+DKL]; Results: 53 2> 56% triplet [BO+DKL]; Results: 48 2> 56%
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REINFORCEMENT LEARNING FOR FINE TUNING

Agent i i
— L : [Simulation | Q-2 Q-3 Reward
Enviroment > '
Actions §
L Reward lg ’
|RL Algorithm <—J L ——Observation I LI
‘jj 9 > 8 800 A el e
. » g) 8 6 3 ; .',. 175 ! ! s N
L : Bl A a e | B R R L NN Tl i
v Method: Deep Deterministic Policy @ Y N N IR A - N
Gradient (DDPG); Actor-Critic Approach NS E e TI R R P A T i iw s TI ViR
v" Simulation Case: Focusing beam on [Experimental* |

target using a triplet (3 Quadrupoles)
v" Experimental Case: Maximizing beam
transmission using 4 quads and 2 steerers
v’ Electrostatic Quadrupoles :
« 2kVto10kV
* Max action +/- 0.25 kV
v’ Steering Magnets:
« -1Ato1A
* Max action +/- 0.25 A
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CONCLUSIONS AND NEXT STEPS

v'Automated data collection and testing the integration of new devices as the
pepper pot and functionalities such as automated quad scan procedure.

v'Successfully trained and deploy a BO with GP on real machine for a
subsection of ATLAS.

v'Transfer model from one beam to another beam.
v'Integration of RL model with the real machine.
v Misalignments and Steerers added into TRACK code.

v Next Steps:
* Improve existing models (ex. acquisition function).
 Better offline training (misalignments and steerers added), online tuning.

v'Current Challenges:
» Possible damage to devices when beam is lost during model training.
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