

3RD ICFA BEAM DYNAMICS MINI-WORKSHOP ON MACHINE LEARNING APPLICATIONS FOR PARTICLE ACCELERATORS

MACHINE LEARNING TOOLS TO SUPPORT THE ATLAS ION LINAC OPERATIONS AT ARGONNE

JOSE L. MARTINEZ-MARIN

Physics Division Argonne National Laboratory

NERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

November 2nd, 2022

OUTLINE

□ Progress on the ATLAS AI/ML Project.

Automated data collection established.

Bayesian Optimization used for online beam tuning.

□AI / ML supporting the commissioning of the new AMIS beamline.

□BO from one beam to another.

□BO with Deep Kernel Learning.

□Reinforcement Learning for online beam tuning.

ARGONNE TANDEM LINEAR ACCELERATOR SYSTEM

THE ATLAS AI / ML PROJECT

Use of artificial intelligence to optimize accelerator operations and improve machine performance

✓ Surrogate Models
✓ Virtual Diagnostics
✓ Tuning Control Model
✓ ...

Use of artificial intelligence to optimize accelerator operations and improve machine performance

Use of artificial intelligence to optimize accelerator operations and improve machine performance

- □ The main project goals are:
 - Data collection, organization and classification, towards a fully automated and electronic data collection for both machine and beam data... established

Use of artificial intelligence to optimize accelerator operations and improve machine performance

- □ The main project goals are:
 - Data collection, organization and classification, towards a fully automated and electronic data collection for both machine and beam data... established
 - Online tuning model to optimize operations and shorten beam tuning time in order to make more beam time available for the experimental program
 ... making progress

Use of artificial intelligence to optimize accelerator operations and improve machine performance

- □ The main project goals are:
 - Data collection, organization and classification, towards a fully automated and electronic data collection for both machine and beam data... established
 - Online tuning model to optimize operations and shorten beam tuning time in order to make more beam time available for the experimental program
 ... making progress
 - Virtual model to enhance our understanding of the machine behavior in order to improve performance and optimize particular and new operating modes

ATLAS – FIRST STEPS IN DATA COLLECTION

~80% time of a Data Scientist is Collecting Data, Cleaning and Organizing Data

- ✓ Kind of data?
- ✓ How much data?
- ✓ Accessible?
- ✓ Automated?

AUTOMATED DATA COLLECTION ESTABLISHED

- ✓ Beam currents and beam profiles digitized
- ✓ A python interface developed to collect the data automatically

Now focused on reducing reading times...

Argonne 🧲

ATLAS - DATA COLLECTION

ATLAS - DATA COLLECTION

SIMULATION - DATA COLLECTION

- ✓ Python wrapper for TRACK (Simulation Code)
- ✓ Generation of simulation data
- ✓ Different conditions and inputs
- Integration with modeling

BAYESIAN OPTIMIZATION USED FOR BEAM TUNING

 <u>Surrogate Model</u>: A probabilistic model approximating the objective function [Gaussian Process with RBF Kernel and Gaussian likelihood]

 <u>Acquisition Function</u> tells the model where to query the system next for more likely improvement [EI]

• Bayesian Optimization with Gaussian Processes gives a reliable estimate of uncertainty and guides the model

BAYESIAN OPTIMIZATION USED FOR BEAM TUNING

 <u>Surrogate Model</u>: A probabilistic model approximating the objective function [Gaussian Process with RBF Kernel and Gaussian likelihood]

 <u>Acquisition Function</u> tells the model where to query the system next for more likely improvement [EI]

• Bayesian Optimization with Gaussian Processes gives a reliable estimate of uncertainty and guides the model

- 7 varied parameters (3 quads + 2 steerers)
- $\circ\,$ Optimization of beam transmission
- $\,\circ\,$ Case of $^{14}N^{3+}$: 29 historical + 33 random tunes
- Case of ⁴⁰Ar⁹⁺: 29 historical tunes

AI/ML SUPPORTING AMIS LINE COMMISSIONING

AI/ML SUPPORTING AMIS LINE COMMISSIONING

reactors, in both fuel and structural materials.

Improving Beam Transmission

Problem: Maximize beam transmission by varying a triplet, two dipoles and two steerers [BO]; **Results**: 40 \rightarrow

AI/ML SUPPORTING AMIS LINE COMMISSIONING

Beam

from

Low-energy heavy-ion beams ~ 1 MeV/u can effectively emulate material damage in nuclear reactors, in both fuel and structural materials.

Improving Beam Transmission

Problem: Maximize beam transmission by varying a triplet, two dipoles and two steerers [BO]; **Results**: $40 \rightarrow 70\%$

Improving Beam Profiles

Problem: Produce symmetric beam profiles by varying a triplet and a steerer [BO]

Training online, slow convergence but steady progress. Competition between nice profiles and beam transmission!

Very encouraging first results!

MULTI-OBJECTIVE BAYESIAN OPTIMIZATION Improving Beam Transmission

Problem: Maximize beam transmission by varying a triplet, and a doublet [MOBO]; **Results**: $53 \rightarrow 60\%$

Problem: Maximize beam transmission by varying a triplet, and a doublet [MOBO]; **Results**: $53 \rightarrow 60\%$

Problem: Produce symmetric beam profiles by varying a triplet, and a doublet [MOBO]

BO – TRANSFER FROM 160 BEAM TO 22NE BEAM Improving Beam Transmission

Problem: Maximize beam transmission by varying a triplet, and a doublet [BO]; **Results**: $53 \rightarrow 58\%$

BO – TRANSFER FROM 1 Improving Beam Transmission Improving Beam Transmission

Problem: Maximize beam transmission by varying a triplet, and a doublet [BO]; **Results**: $53 \rightarrow 60\%$

Problem: Maximize beam transmission by varying a triplet, and a doublet [BO]; **Results**: $48 \rightarrow 67\%$

BO WITH DEEP KERNEL LEARNING AT AMIS

Deep kernel learning (DKL) aim to combine the representational power of neural networks with the reliable uncertainty estimates of Gaussian processes.

Improving Beam Transmission

Problem: Maximize beam transmission by varying a triplet [BO+DKL]; **Results**: $53 \rightarrow 60\%$

BO WITH DEEP KERNEL LEARNING AT AMIS

Deep kernel learning (DKL) aim to combine the representational power of neural networks with the reliable uncertainty estimates of Gaussian processes.

Improving Beam Transmission

Problem: Maximize beam transmission by varying a triplet [BO+DKL]; **Results**: $53 \rightarrow 60\%$

BO WITH DEEP KERNEL LEARNING AT AMIS

 Deep kernel learning (DKL) aim to combine the representational power of neural networks with the reliable uncertainty estimates of Gaussian processes.

Improving Beam Transmission

Problem: Maximize beam transmission by varying a triplet [BO+DKL]; **Results**: $53 \rightarrow 56\%$

BO+DKL – TRANSFER FROM 160 TO 22NE BEAM

Improving Beam Transmission

Problem: Maximize beam transmission by varying a triplet [BO+DKL]; **Results**: $53 \rightarrow 56\%$

BO+DKL – TRANSFER FROM 160 TO 22NE BEAM

Improving Beam Transmission

Problem: Maximize beam transmission by varying a triplet [BO+DKL]; **Results**: $53 \rightarrow 56\%$

Improving Beam Transmission

Problem: Maximize beam transmission by varying a triplet [BO+DKL]; **Results**: $48 \rightarrow 56\%$

REINFORCEMENT LEARNING FOR FINE TUNING

- ✓ Method: Deep Deterministic Policy Gradient (DDPG); Actor-Critic Approach
- Simulation Case: Focusing beam on target using a triplet (3 Quadrupoles)
- Experimental Case: Maximizing beam transmission using 4 quads and 2 steerers
- ✓ Electrostatic Quadrupoles :
 - 2 kV to 10 kV
 - Max action +/- 0.25 kV
- ✓ Steering Magnets:

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

- -1 A to 1 A
- Max action +/- 0.25 A

CONCLUSIONS AND NEXT STEPS

- ✓Automated data collection and testing the integration of new devices as the pepper pot and functionalities such as automated quad scan procedure.
- \checkmark Successfully trained and deploy a BO with GP on real machine for a subsection of ATLAS.
- ✓Transfer model from one beam to another beam.
- \checkmark Integration of RL model with the real machine.
- ✓ Misalignments and Steerers added into TRACK code.
- ✓ Next Steps:
 - Improve existing models (ex. acquisition function).
 - Better offline training (misalignments and steerers added), online tuning.

✓ Current Challenges:

• Possible damage to devices when beam is lost during model training.

ACKNOWLEDGMENTS

Brahim Mustapha, Ben Ryan Blomberg, Eric Letcher, Daniel Stanton, Clayton Dickerson, Kenneth Bunnell, Daniel Santiago, Megan McIntyre, Alexander F Grabenhofer, Gavin Matthew Dunn, Henry Brito, Samantha Burtwistle, Tony Krupa, Leland Luecke, etc.

