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Relativistic Heavy lon Collider

« Two 3.8 km counter-rotating supper-conducting rings;
« Six Interaction Regions (IR), LEReC is at IRZ;
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L EReC System Overview
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 LEReC is used to increase the luminosity, it was successfully improved the
luminosity multifold in 2020 and 2021 runs;

« 704 MHz e-bunches (grouped into 9 MHz macro-bunches) are produced from
the photocathode and accelerated in the SRF cavity to the designed energy
(1.6 MeV, 2 MeV);

* Those e-bunches are delivered to the cooling sections (20 meter), where they
co-travel with ion bunches.
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Motivations

« BPM Measurement errors;
* An independent way to optimize the cooling performance.

Method

« Bayesian Optimization (BO): a powerful tool for finding the extrema of
objective functions that are expensive to evaluate;
» ltis called Bayesian because it uses the famous “Bayes’ theorem”.

P(f|Dr) o< P(Dya|f)P(f)
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Gaussian Process

[Brochu et al, 2010]

« A probability distribution over
possible functions that fit a set of
points

f(x) ~ GP(m(x), k(x,x"))
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* The kernel function k(x;, x;) /
describes how closely two points (k) —a(x,)
are related.

X Xy x3

 The function value at a new sample point x;,, follows N (u(x+1), 07 (xt41))
where

ﬁif(XHl) = kTK_lfl:f
Uf(){t+1) = k(X¢+1, X¢+1) — kTK_lk
k(x1,x1) - k(xq,x¢)
and the covariance matrix K = k(X,X) = : :
k(xe,x1) - k(xp, xt)
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Acquisition Function

« Guide how input space
should be explored during
optimization;

* Probability Improvement (PI)
* Expected Improvement (EI)

» Upper Confidence Bound
(UCB)

« A combination between
predicted mean and
variance;

UCB(x) = u(x) + ko(x)

L? Brookhaven

National Laboratory

[Brochu et al, 2010]
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Experiment Settings

correctors

LIl

BPMs

The Goal is to use BO to tune electron trajectories to
maximize the ion cooling rate.

* lons are assumed in the center position, only the first 4 BPMs are
considered,
» Decreasing speed of transverse ion beam size:
A=(1/8)(d&/dt)
« Cooling performance is measured by (- A), a more negative A means a
faster cooling rate;
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Initial Sampling
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 Input (Top): 4 BPMs, go through the entire [-3, 3] mm range;

* Objective (Bottom): cooling rate (- A), exhibits a pattern, favors input
positions around O.

u'»‘ Brookhaven

National Laboratory




Optimization Strateqgy in the Presence of Noise
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Smoothing the Noise
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* Use moving average windows, instead of point § values:
A = (1/8)(ds/dt)

« The window sizes affect how algorithm behaves;
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Results
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The final tuning algorithm uses a window size of 15;
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Electron Positions Controlled by the BO

Electron positions
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» Electron trajectories reported by 4 BPMs;

« The algorithm can tune the trajectories from the farthest points (-3 mm) to
the center position and maintain them.
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Future Work

« Increase the convergence rate to implement the full control routine
on 16 BPMs;

« Physics-model informed GP [1]:
An alternative way to estimate the kernel function.

« Contextual GP [2]:
Handle the environmental factors by using separate kernels to
model the inputs and contexts.

[1] A. Hanuka, X. Huang, J. Shtalenkova, et al., Physics model-informed gaussian process for online optimization of particle accelerators, Phys.
Rev. Accel. Beams 24, 072802 (2021).

[2] A. Krause and C. Ong, Contextual gaussian process bandit optimization, in Advances in Neural Information Processing Systems (NIPS), Vol.
24, (Curran Associates, Inc., 2011).
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Data-informed GP, Physics model-informed GP

f(x) ~ GP(m(x), k(x,x))

« For convenience, we usually assume the prior mean is the zero-function
m(X)=0. A very popular choice for the kernel is the squared exponential

function: 1

ks (o, ) = 0% exp| — (x =) S(x =)

» Accurately estimate of the precision matrix ): is very important.

« Data-informed GP estimates the Sigma matrix by fitting the data
repeatedly.

« Physics model-informed GP, by evaluating the Hessian matrix around the
optimal point (could be obtained by physics model/simulation), then
calculate the Sigma directly: * = —-H/2
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Simulation Comparisons
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» Obijective function: 4-dimensional Gaussian-like function centered at the
origin;

* Physics model-informed GP converges faster and is more stable.
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Contextual GP (CGP)

Normalized ion intensity and beam size vs. time
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Contexts — uncontrollable, varying

environmental conditions that
affect objective function value;

In our case —ion beam intensity
decreases with time and can be
treated as an environmental
variable;

Construct a composite kernel —
one describes input-specific trend
(ks), the other describes context-
specific trend (k;):

« Multiplication

* Summation
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CGP Simulation
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» Obijective function: 4-dimensional Gaussian-like function centered
at the origin plus a sinusoidal function;

« 20 initial samples;
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Results comparison: Contextual GP
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«  Without CGP: algorithm is unable to converge due to the varying context;

» With CGP: algorithm converges in 7 steps and is stable;
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Conclusion & Outlook

« The BO method can be very effective in control tasks at accelerator
control systems;

* |t opens many possibilities of trying different machine learning
methods on optimizing performance for control tasks in the RHIC
complex, as well as the future EIC.

* Instrument calibration: lonization Profile Monitor (IPM) at AGS;
« Coherent electron Cooling (CeC) experiment at RHIC
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IPM Calibration

« lonization profile monitor: measures transverse profile of AGS IPM measurement
the beam
» Circulating beam ionizes residual gas in the wl Ji
beampipe; j f
* An electric field forces electrons onto a microchannel worf |
plate (MCP); F

* Forms a projection of the beam profile;

+ Beam profile measurement depends on position because
of systematic errors in channel gains from
* Initial channel-to-channel gain variation;
* Depletion of channel gains over time (systematically

faster in region of high beam intensity);
* Variation in ADC performance;

* Usually addressed with position scans and offline Position scan for calibration
calibration factors;

Input profiles 5 Corrected profiles

500

* Machine learning/BO opportunities: o
» Confidence intervals for channel
gains, profile fit parameters;

» Identification, imputation of data

of ‘bad’ channels;
« Data assimilation, slow

calibration for aging MCPs; S B Mo @ @ w
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Improving CeC Operations

 Motivation

* Tuning of system parameters (i.e. solenoids and trims) are done
blindly to obtain desirable beam status

« Optimization is done by time-consuming genetic algorithm (GA)

+ Goal
« Virtual diagnostics: tuning parameters < YAG screen images

« Multi-objective optimization: peak current, emittance, energy
spread etc.
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Thank you !
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