
Slow Spill Regulation 
with Machine Learning

Replacing PID controllers with neural networks



Introduction
Mu2e is an upcoming experiment at Fermilab that intends to 
capture Muons in Aluminum atoms and look for new physics in 
its decay to electrons. 

To help increase the signal strength, Mu2e demands pulses of 
muons arrive at the Aluminum target with strict requirements 
on the rate uniformity. 

To create the muons, proton pulses are made to hit a 
production target and muons are obtained from the 
secondaries. The proton pulses with the required time structure 
are created by the slow extraction of bunched beam from the 
Delivery Ring.

The extraction (or ‘spill’) of protons from the Delivery Ring is 
achieved using third integer resonance extraction.

Objective: Regulate the uniformity of the extracted spill - or 
increase its Spill Duty Factor (SDF) - by regulating the slow 
extraction process.
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Introduction
Objective: Regulate the uniformity of the extracted spill - or 
increase its Spill Duty Factor (SDF) - by regulating the slow 
extraction process.

Historical approach: PID Controllers
- PIDs are a linear and symmetric heuristic control system 

with constant parameters, meaning they are designed to 
operate in domains in which the response of the system is 
invariant across all operating regions. 

Proposed Approach: Learned Controllers
- As we cannot presume the exact noise distribution and 

possible nonlinearities in the extraction system, a control 
system capable of adapting to the nonlinearities of the 
extraction system is warranted. 

- Modern neural networks represent a class of arbitrary 
function approximators and, as such, are a natural 
solution for extending resonant extraction control 
systems into the nonlinear regime.
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Regulation system at a glance
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Sextupole Electrostatic 
Septum

+ +

Fixed

Quadrupole

Variable

Analytically calculated quadrupole current ramp for one full spill duration.

In our setting, we focus on modulating the quadrupole current to control 
the extraction rate. For our purposes, we consider the sextuple and 
electrostatic septum as fixed.

Position within the spill (ms)0 43

1 A. Narayanan, THIRD-INTEGER RESONANT EXTRACTION REGULATION SYSTEM FOR MU2E, 2022
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A snapshot of the beam in physical space at the extraction location. 
As the horizontal beam size increases, a slice of circulating beam 
(that is past the position of the electrostatic septum) is extracted.
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Objective:
Regulate the extraction to 
produce the smoothest 
corrected intensity profile 
possible.
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PIDs
● Linear and symmetric heuristic 

control systems
● Constant parameters mean the 

PID assumes the response of 
the system is invariant across all 
operating regions

Our setting

● Possibly nonlinear noise profile
● Response of the extractor varies 

across operating regions
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Neural Networks
● Nonlinear function approximators 

that adapt to the input data
● Can be made ‘domain-aware’ by 

including positional information

Our setting

● Possibly nonlinear noise profile
● Response of the extractor varies 

across operating regions
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Differentiable Simulator *

● The simulator is an analytical model 
of the beam response to the 
regulation actuator

● In order to train the neural network, 
we constructed a differentiable 
simulator.

● The simulator must be differentiable 
in order to backpropagate through 
the spill physics to update the 
neural network weights.

Extraction 
System

* A. Narayanan et al., “Optimizing Mu2e Spill Regulation System Algorithms”, in Proc. IPAC'21, May 2021, pp. 4281-4284. doi:10.18429/JACoW-IPAC2021-THPAB243

Deviations 
from Ideal



Time

In
te

n
si

ty
Formulation for Machine Learning

14

Neural 
Network

w
w ∈ R1 x d

t ∈ [0,1]
q ∈ R1 Differentiable 

Spill Simulator

Input Data Output



Time

In
te

n
si

ty
Formulation for Machine Learning

15

Neural 
Network

w
w ∈ R1 x d

t ∈ [0,1]
q ∈ R1 Differentiable 

Spill Simulator

Input Data Output

Gated Recurrent Unit (GRU)*

* https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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q ∈ R1

Input Data Output

Gated Recurrent Unit (GRU)1

1 https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Input Data Output

Gated Recurrent Unit (GRU)1

1 https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Training Loss: 
Performance to Ideal

Training Loss = MSE(Corrected Spill Intensity - Ideal Intensity)

Supervised Learning
The model is trained to minimize the difference 
between the Corrected Spill Intensity and the Ideal 
Intensity.

Reinforcement Learning
The model is trained to maximize the inverse of the 
difference between the Corrected Spill Intensity and the 
Ideal Intensity.
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Deep Reinforcement Learning

● Intelligent agent learning 
to maximize rewards

● Markov Decision Process

Our setting

● Possibly nonlinear noise 
profile

● Response of the extractor 
varies across operating 
regions
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State: noised spill of a window of 
10 timesteps (1ms)

Action: signal to regulate the spill 
intensity

Reward: calculated from the 
difference between corrected 
signal and noise signal
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Ref: 
https://spinningup.openai.com/en/latest/algorithms/sac.html
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Results: Supervised Learning

As training proceeds, the GRU gradually exceeds the PID regulation performance.

Single Spill Example, PID vs ML
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Results: Supervised Learning

The GRU model outperforms the PID in all scenarios, with the performance difference 
increasing as we increase the system bandwidth.

Average corrected SDF over 1,000 spills. Input noise 
has an average of SDF of 0.51.

Extraction Control BW (kHz)
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SDF of Noised Spill

Ideal SDF (close to 1.0)

SDF of Corrected Spill

Preliminary Results: Reinforcement Learning

The RL agent is capable of generating control signals at each timestep that regulate the 
spill towards 1.

Average SDF of corrected spill over 1000 training episodes  Corrected spill vs. Noised spill at episode 1000
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Summary

● Constructed a differentiable slow spill extraction simulator that allows us to train 
neural networks to regulate the slow spill extraction rate.

● Showed that a simple recurrent neural network (GRU) can outperform an 
optimized PID controller (as measured by relative increases in the SDF of the 
corrected spill).

○ Further showed that this difference increases as we increase the system 
bandwidth.

● WIP: Showed encouraging results using an RL-based regulation system
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