
A closer look at RL for
beam-based feedback systems

Leander Grech
Simon Hirlaender

Gianluca Valentino

Outline

1. What are beam-based feedback (BBF) systems?

2. Feasibility study on the application of RL on QFB

3. Development & testing of RandomEnv (RE)

4. Testing state-of-the-art RL algorithms

5. Simplification of RE into discrete actions
a. Tabular RL approach

b. Linear RL approach

What are beam-based
feedback (BBF) systems?

1/5

Beam-based feedback (BBF) systems

This error is the input to a
controller

Reference value.
Has same units as
the measurement

Accelerator

Beam
instrumentation
measurements

● Beam and machine parameters are modelled quite accurately
○ Linear models - transfer matrices

● PID controllers use inverse transfer matrix to correct magnet currents
● LHC was the first accelerator to require automatic beam-based feedback controller

systems
● Different types of magnets are used to correct these parameters

Beam-based feedback (BBF) systems

● One of these BBF systems was considered for RL tests

Feasibility study on the
application of RL on QFB

2/5

Tune feedback (QFB) system
● QFB system operates on both beams

but each beam is corrected
independently by 16 quadrupoles

○ Assume no coupling

● Therefore the QFB operation can be
simplified into one system with one
beam:

○ Input: 2 continuous state dimensions:
■ Horizontal tune (H)
■ Vertical tune (V)

○ Output: 16 continuous action
dimensions:

■ Error in magnet deflection
(radians)

■ 16 total correcting quadrupoles

● Created simulation environment
(QFBEnv)

○ Using transfer matrix to calculate forward
dynamics

○ Show equation of dynamics
● Optimal policy available for normal

operating QFB
○ Inverse of transfer matrix

● State & Actions
○

○ Q is the state - tune
● Reward/Objective function

○

● Terminal states
○ Max(abs(state)) < threshold used in real

operation

QFBEnv

Preparing QFB for RL

Transfer
matrix

Current state

Next state

Trim state

Action

Objective
function

Reward Next state

Training on QFBEnv
● Trained various types of state-of-the-art RL algorithms
● Used deep networks for policy and value functions

○ Hidden layers: [64, 64] each

● Proximal Policy Optimization (PPO) provided best results (on-policy method)
○ Actions decayed to zero
○ Comparable behaviour to PI controller

● Normalized Advantage Function with double Q (NAF2) (off-policy method)
○ Also performed well empirically
○ But achieved a sub-optimal policy
○ Hard to tune the hyperparameters

Testing trained agents on QFBEnv
● One example of a testing scenario:

● Magnet malfunction
○ Magnet(s) chosen at random and turned off

for the duration of the episode
○ PPO agent outperformed PI controller

showing that it managed to generalise well
during training

E.g. 3 magnets failures

2D state

16D actions

Development & testing of
RandomEnv (RE)

3/5

RandomEnv (RE)
● First goal was to develop a general

environment
○ Solving this environment means solving any

BBF with similar attributes
○ Attributes related to state and action spaces

■ Size
■ Discrete or continuous

● What we want to study is how well we can
train RL agents on BBF-type environments

● Dynamics can be fictitious but must have
certain properties

○ Invertible, i.e. an optimal response is possible
○ Scalable, i.e. different number of states/actions
○ Randomly generated dynamics to allow for

multi-seed tests

RandomEnv

Transfer
matrix

Current state

Next state

Trim state

Action

Objective
function

Reward Next state

Testing state-of-the-art RL
algorithms

4/5

State-of-the-art tests
● In QFB study, Proximal Policy Optimization (PPO) provided best results

● Closely related to Trust-Region Policy Optimization (TRPO)
○ Provides theoretical guarantees on how policy is optimised
○ (See extra slides for more PPO vs TRPO info)

● Studies show both are highly susceptible to code-level optimizations
○ Some RL libraries provide good Python implementations

● PPO and TRPO agents were trained on RE of varying sizes
○ Square dynamics →Nb. State dimensions = Nb. Action dimensions → M=N
○ Up to 5M training steps
○ M: 2→15

● Training convergence
○ How long until training produces successful policy
○ Success = Reaching optimal state

■ Measurement - Reference = Error → 0

Training PPO on RandomEnv with increasing complexity
● RandomEnv: creation of linear dynamics →Can be set to an Identity matrix

○ Why Identity matrix?
■ One-to-one linear orthogonal mapping between the state and actions
■ Most intuitive when debugging
■ When deep networks are involved, having “simple” dynamics, does not imply better training

● Deep networks have non-linear mappings within and is dependent solely on initial weight initialization

● Let M = Number of state dimensions
● Ler N = Number of action dimensions
● Set M=N for square dynamics - Benchmark for each RL algorithm
● Instantiate 5 separate environment-agent instances for every
● Set the default hyperparameters to PPO algorithm

○ Stable-baselines3 initial hyper-parameters

● Train PPO agent on 5 x 14 = 70 agents

PPO as RE gets more complex
● M: 2→ 14
● Initial network weights contribute

to the differences in each agent of
size

● Environment dynamics fixed for
all env sizes

○ Transfer matrix = I (mxm)
● PPO training times blows up

exponentially with env size
● Sporadic spread in training times

● RE 6x6
○ Training time varies by 1 order of

magnitude
○ 100Hz system, training can take

between 15 minutes and 3
hours!

TRPO trained on RE with identity transfer matrix
● M: 5→14
● Using same hyperparameters for

all runs
● Environment dynamics fixed for

all env sizes
○ Transfer matrix = I (mxm)

● Trains more predictably than PPO
● Spread in training time increases

with larger environments
● Can solve RE 14x14 in

approximately 2M training steps

Comparing PPO and TRPO
● Goal was not to find the optimal

hyper parameters
○ That would be done by a grid-search
○ PPO might have performed better

● How easy is it to use
state-of-the-art RL algorithms ‘out
of the box’?

○ TRPO seems to be a better choice
● BUT…

○ Implementation of PPO really
matters!

● In fact this issue is studied closely,
e.g.:

“Implementation Matters in Deep Policy
Gradients: A Case Study on PPO and
TRPO”
Logan Engstrom, et al.
ICLR 2020

TRPO trained on different dynamics
● 5 random seeds per environment

size
○ Generate 5 different dynamics

● Train 5 TRPO agents, per
environment

○ Networks intialised with different
seeds

● Larger environments, training
time spread can increase
significantly
○ Unlucky dynamics
○ Might be fixed with proper hyper

parameter tuning, per environment

Key takeaways from these tests
● Results show that expected training time until convergence to an optimal policy

increases exponentially with environment size
○ But training becomes unstable in large environments
○ TRPO is reasonably robust to hyperparameter tuning, but suffers in large environments

● State-of-the-art RL algorithms might not be suitable for online BBF systems
○ Too sample inefficient
○ Difficult to use and tune
○ Highly susceptible to code-level design choices

● Do we really need deep networks in BBF systems?

Simplification of RE into
discrete actions

5/5

Back to basics
● RL without deep networks?

○ Tabular methods
○ Linear function approximation

● Strong theoretical convergence guarantees only exist for tabular RL
○ Can only be used with discrete state-action space
○ Finite number of state-action pairs possible
○ Very limited environment size

● RL with linear approximation also has some guarantees
○ Hand-designed features
○ Continuous states possible

● Using simpler agents might be useful for real operation in BBF systems
○ Deterministic training time/number of training interactions
○ Monotonic policy improvement
○ Safe policies
○ Meaningful exploration

RE with Discrete Actions (REDA)
● RE was converted to use discrete actions (REDA)

○ Same action strategy as OpenAI Gym MountainCar environment
○ Each action dimension can be one of three values [-ε,0,+ε]
○ ε → Tuned such that at least an episode has more than 1 step

■ i.e. one-step solutions are made less likely
■ Enforcing a precision with which the policy can change the state
■ Makes the MDP much simpler to solve

● We can use REDA to analyse fundamental RL ideas
○ Episodic vs infinite-horizon environment
○ Epsilon-greedy vs Boltzmann policies
○ Regret upper confidence bounds

● Action space can be represented by a finite set of choices. We have some options:

○ Policy type 1: All action permutations →Cardinality(A) = 3^N
■ E.g. REDA2x2: card({{-ε,-ε}, {-ε,0}, {-ε,+ε}, {0,-ε}, … , {+ε,0}, {+ε,+ε}}) =27 possible actions

○ Policy type 2: Canonical vectors + do nothing action →Cardinality(A) = 2*N + 1
■ E.g. REDA2x2: card({{-ε,0},{+ε,0},{0,-ε},{0,+ε},{0,0}}) = 5 possible actions

● The simplest stable RL algorithm using temporal difference learning
○ State-Action-Reward-State-Action (SARSA)

● SARSA + REDA tests follow

-1N, 0N, +1N

Linear RL on REDA
● REDA has continuous states and discrete actions
● Discrete actions either policy type 1 (all permutations) or policy type 2

(canonical actions)
● What does linear mean?

○ V and Q functions are a linear in the features of the state
○ In deep networks, last layer is linear on output of last hidden layer

● What are features of the state?
○ Recall:

■ Policy function maps state to action
■ When applying deep networks for the policy of an agent in Deep RL:

● All layers before the last linear layer represent the features of the state

● If we have a feature function:

○ Value can be estimated with:

○ Greedy policy:

REDA with all action
permutations set

● The training times match closely
to the training of PPO and TRPO

○ Order of 10^5 steps

● Environments larger than 7x7
suffer from bad sample efficiency

● REDA 7x7 = 2187 actions
● REDA 8x8 = 6561 actions

● Learning rate might have to be
reduced with large environments
since weights might explode

● Learning and exploration decay
was linear and should be adjusted
for larger environments

● REDA 7x7 →REDA 15x15
○ Same hyperparameters

REDA with canonical
action set

Comparing all action
permutations vs
canonical action set
● Canonical action set more sample

efficient
● Optimal policy with canonical

action set has similar episode
lengths to policy with all action
permutations

● So we can use REDA with very low
number of actions

● Note episodes become longer with
larger env size

Comparing the two REDA approaches
● By playing some episodes we can look at the two different type of policies

○ Both policies reach optimal states after approx. the same number of steps
● Showing agents trained on REDA 7x7
● By using canonical action set: ~10x faster to train

CONTINUOUS
STATE

DISCRETE
ACTION

ALL ACTION PERMUTATIONS
@ TRAINING STEP 108800

CANONICAL ACTION SET
@ TRAINING STEP 9400

Time steps in one episode of REDA 7obsX7act

Summary and future work
● Started with feasibility study of RL on Tune feedback system
● Created a generalised environment which matches the operation of a BBF system
● Tested performance of state-of-the-art deep RL algorithms on REs of different

complexities
○ Found to be unreliable to train
○ Difficult to make them work in real operation

● Since guarantees only exist only for tabular RL and linear function approximation
○ We use SARSA to train on REDAs of different complexities

● For small enough problems (~< REDA 25x25), you can achieve good sample
efficiency compared to state-of-the-art

● Any suggestions are welcome!

Thank you!
Questions?

Extra slides

What are feedback systems: E.g. PID Controller

This error is the input to a
controller

Reference value.
Has same units as
the measurement

Tune feedback (QFB) system

● The Large Hadron Collider (LHC) BBF system by
LHC Long Shutdown 2

○ Highlighted systems are part of QFB

● Tune - related to number of transverse
oscillations of a particle per turn in the
accelerator

● Tune is measured for the horizontal (x) and the
vertical (y) plane respectively

○ 2 measurements of tune per beam (2 beams in
LHC)

DeepREL
● Continue looking at the performance of RL agents on BBF controllers
● All beam-based feedback systems rely on 2D matrix

○ Linear dynamics model
○ Sometimes number of eigenvalues is controlled to globalise correction - localised correction results in

dramatic corrections to magnets

● Some BBF systems in the LHC have 1000s of states and 100s of actions
○ E.g. Orbit Feedback (OFB) system controlling position of beam in the beam pipe

● Can state-of-the-art RL handle such a system with linear dynamics?

RL motivation
● Started as an explorative study on Tune feedback system
● Finding optimal response in an unknown environment
● Preliminary offline tests show potential improvement of RL agent compared to

standard controller
● This work looks at expanding the use of RL to larger systems

● Linear model is factorised
○ , where U & V are unitary matrices
○ I.e. inverse becomes trivial:
○ Factored matrices are real-valued; i.e. U & V are

orthogonal matrices

RE dynamics

● We can use Singular Value Decomposition (SVD) to find inverse matrix
○ Pseudo-inverse if number of states != number of actions:
○ Gives control on localisation/globalisation of corrections
○ Used in LHC BBFs

● We can sample new linear systems
○ Invertible dynamics
○ Easy to create different size environments
○ Change random seed to create different environments

● When modelling a physical system linearly we obtain a dynamics matrix

Sample
orthogonal

matrices

Training plots from TRPO
● Showing average return obtained greedily

during evalutation

RE5x5

RE15x15

RE10x10

Different types of RL algorithms
● Trust region algorithms

○ Updates to the parameters occur within local neighbourhood to ensure smooth policy transitions

● Trust-Region Policy Optimization (TRPO)
○ Constrains the action conditional probability distribution from the policy
○ Kullbeck-Leibler divergence constraint between policy updates
○ Uses an approximation of the lower bound expected return from a policy

● Proximal Policy Optimization (PPO)
○ Attempts to simplify TRPO
○ Constrains policy parameter space between updates
○ With deep networks there may be non-linear dependencies between policy parameters and outputs

● Normalised Advantage Functions (NAF)
○ Analytical formulation of Q-Function
○ Off-Policy algorithm - can use experience obtained from an unknown policy
○ Can be combined with advances made in deep off-policy RL algorithms;

e.g. Twin-Delayed Deep Deterministic policy gradient (TD3)
○ Promising results from QFB study

● Deterministic policy gradient theorem
● Deep Deterministic Policy Gradient (DDPG)

○ Deterministic Policy Gradient theorem: Equivalent to stochastic policy gradient as the noise goes to
zero

● Twin-Delayed Deep Deterministic policy gradient (TD3)
○ Advances to DDPG algorithm
○ Train two Q networks; choose the smallest; minimise overestimation bias
○ Delayed target Q network updates
○ Target smoothing action noise

● Soft Actor-Critic (SAC)
○ Adding an entropy regularisation term to the PG loss
○ Maximise trade-off between exploration and exploitation
○ Off-policy algorithm

Different types of RL algorithms

Other tests on QFBEnv
● Normal action noise with varying magnitude:

○ A sweep from 0% → 50% action noise
○ Generated test episodes with greedy policy at 10%, 25% and 50% action noise

● Applying systematic perturbations to the tune
○ 50Hz noise harmonics were messing with the tune estimation
○ Sporadic estimates mislabeled to occur at these harmonics
○ Using worst-case realistic perturbations observed in real tune estimates
○ PPO, NAF2 outperform the PI controller again

■ Deep RL trained agents manage to keep the state from drifiting

NAF2 Best Policy Evaluation
3 actuator failures

● Off-policy algorithm
● PPO equivalent - good sample

efficiency
● Undesirable performance

compared to optimal policy
○ Optimal - derived from transition

matrix
○ Actions do not decay proportionally

to state:

● Needs well-tuned hyper
parameters

● Best policy trained by NAF
algorithm is not the optimal
policy

Model-based RL on QFBEnv
● Training of an uncertainty

aware model with a crude
approximation through network
ensembles

● To the right: AE-DYNA with
three actuator failures

● Interesting observations:
○ Model-Based RL (MBRL) agents fail

similarly to the optimal controller,
indicating strong dependence of
policy on model

○ Remember: Model-Free RL (MFRL)
agents on rely on estimation of
expected return

How do you implement linear RL?
● Find a suitable feature representation of the state. This is a good time to introduce

prior knowledge about the environment
○ E.g. I know that REDA has an objective proportional to the root mean square (RMS) objective

Therefore a good feature selection for REDA_MxN would be:

○ Therefore we would only require |S| + 1 number of weights for this feature selection:

RE as an MDP
● Markov Decision Processes (MDP) are used to formulate RL problems

○ Discrete time, stochastic control process

● How do we design environment?
○ This is critical to what we want to achieve

● Use case 1: BBF is turned on when needed
○ Episodic MDP
○ You can omit discount factor for fixed time episodes

● Use case 2: BBF is on continuously
○ Infinite horizon MDP
○ Discount factor required
○ Numerical problems when exploration is unbounded

● Exploration in a real system needs to be bounded otherwise we risk breaking the
machine

○ E.g. Orbit of the beam cannot exist outside the beam pipe!

● Initial states need to be realistic
○ E.g. if the state is 2D and we have 1 action, all the states have to be reachable with the dynamics

Tabular RL on REDA

● To use tabular RL methods we also need:
○ Discrete representation of the state

● Tile-coding is a good candidate:
○ Non-parametric function approximator

● Memory complexity blows up quickly
○ O(NB_TILINGS x NB_BINS ^ M x |A|)

● Limited to very small environments (< REDA_5x5)

((2,1),(2, 1),(3,1),(3,2))

REDA with canonical
action set
● Large environments

(>REDA_10x10) require more
hyperparameter tuning

Comparing Deep RL &
Linear RL
● We can improve sample efficiency on

large environments
○ Using SARSA
○ Hand-designed features
○ Limiting number of actions

Initialising RE MXN where M < N
● Having less actions than observations

results in unreachable states
● The planes show the the direction of the

possible trims using the forward
dynamics only

Resultant plane obtained by Monte
Carlo simulation containing all
plausible initial states for each resp.
env.

4 random
dynamics

