A closer look at RL for beam-based feedback systems

Leander Grech Simon Hirlaender Gianluca Valentino

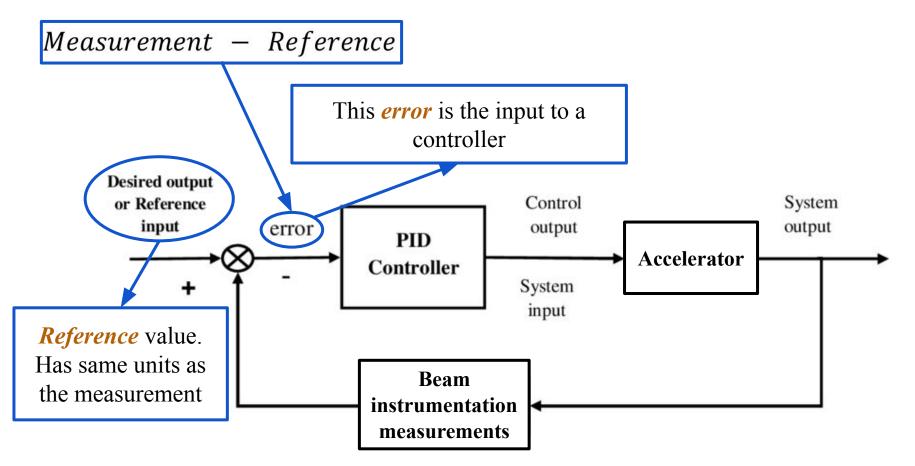
The Malta Council for Science & Technology

Outline

- 1. What are **beam-based feedback (BBF)** systems?
- 2. Feasibility study on the **application of RL on QFB**
- 3. Development & testing of RandomEnv (RE)
- 4. Testing state-of-the-art RL algorithms
- 5. Simplification of **RE into discrete actions**
 - a. Tabular RL approach
 - b. Linear RL approach

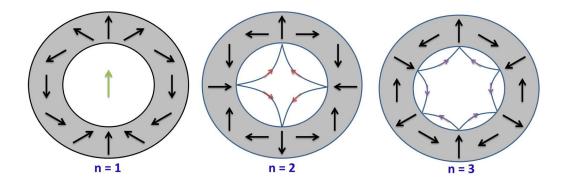
What are beam-based feedback (BBF) systems?

Beam-based feedback (BBF) systems



Beam-based feedback (BBF) systems

- Beam and machine parameters are modelled quite accurately
 - Linear models transfer matrices
- PID controllers use **inverse transfer matrix** to correct magnet currents
- LHC was the first accelerator to **require** automatic beam-based feedback controller systems
- Different types of **magnets** are used to correct these parameters



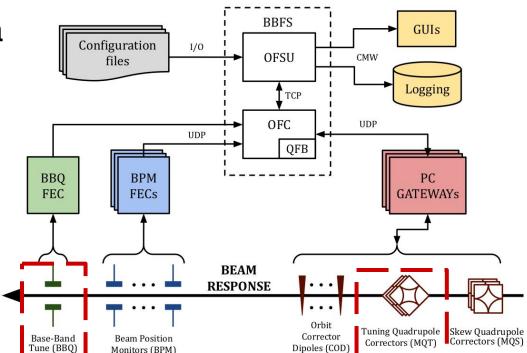
• One of these BBF systems was considered for RL tests

Feasibility study on the application of RL on QFB

Tune feedback (QFB) system

- QFB system operates on both beams but each beam is corrected independently by 16 quadrupoles

 Assume no coupling
- Therefore the QFB operation can be simplified into one system with one beam:
 - Input: **2 continuous state dimensions**:
 - Horizontal tune (H)
 - Vertical tune (V)
 - Output: 16 continuous action dimensions:
 - Error in magnet deflection (radians)
 - 16 total correcting quadrupoles



Preparing QFB for RL

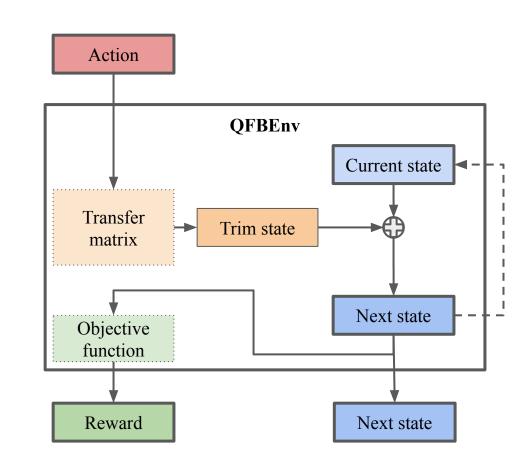
- Created simulation environment (**QFBEnv**)
 - Using transfer matrix to calculate forward dynamics
 - Show equation of dynamics
- **Optimal policy available** for normal operating QFB
 - Inverse of transfer matrix
- State & Actions
 - $\circ \Delta \vec{Q}_{t+1} \stackrel{\cdot}{=} \Delta \vec{\sigma}_t \cdot R + \Delta \vec{Q}_t$
 - Q is the state tune
- **Reward**/Objective function

$$\dot{r} = -\sqrt{\frac{1}{M} \left(\sum_{i=1}^{M} s_i^2\right)}$$

• Terminal states

 \bigcirc

• **Max(abs(state))** < **threshold** used in real operation



Training on QFBEnv

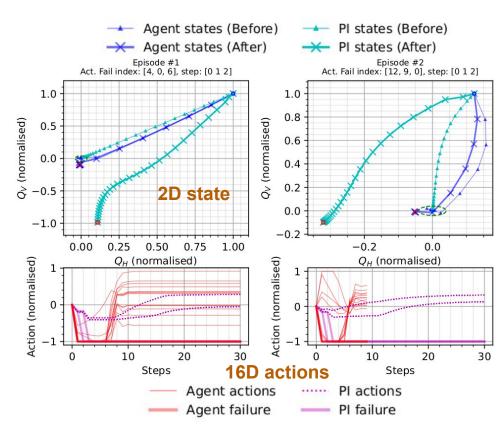
- Trained various types of state-of-the-art RL algorithms
- Used deep networks for policy and value functions
 - Hidden layers: [64, 64] each
- Proximal Policy Optimization (PPO) provided best results (on-policy method)
 - Actions decayed to zero
 - Comparable behaviour to PI controller
- Normalized Advantage Function with double Q (NAF2) (off-policy method)
 - Also performed well empirically
 - But achieved a sub-optimal policy
 - Hard to tune the hyperparameters

Testing trained agents on QFBEnv

• One example of a testing scenario:

- Magnet malfunction
 - Magnet(s) **chosen at random and turned off** for the duration of the episode
 - **PPO agent outperformed PI controller** showing that it managed to generalise well during training

E.g. 3 magnets failures

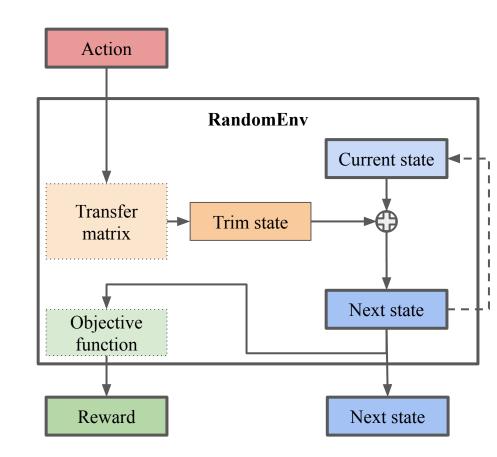


Development & testing of RandomEnv (RE)

3/5

RandomEnv (RE)

- First goal was to develop a general environment
 - Solving this environment means solving any BBF with similar attributes
 - Attributes related to state and action spaces
 - Size
 - Discrete or continuous
- What we want to study is how well we can train RL agents on BBF-type environments
- Dynamics can be *fictitious* but must have certain properties
 - **Invertible**, i.e. an optimal response is possible
 - Scalable, i.e. different number of states/actions
 - **Randomly generated** dynamics to allow for multi-seed tests



Testing state-of-the-art RL algorithms

4/5

State-of-the-art tests

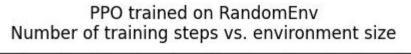
- In QFB study, Proximal Policy Optimization (PPO) provided best results
- Closely related to Trust-Region Policy Optimization (TRPO)
 - Provides **theoretical guarantees** on how policy is optimised
 - (See extra slides for more PPO vs TRPO info)
- Studies show both are highly susceptible to code-level optimizations
 - Some RL libraries provide good Python implementations
- PPO and TRPO agents were trained on RE of varying sizes
 - Square dynamics \rightarrow Nb. State dimensions = Nb. Action dimensions \rightarrow M=N
 - Up to 5M training steps
 - M: 2→15
- Training convergence
 - How long until training produces successful policy
 - Success = Reaching optimal state
 - Measurement Reference = $Error \rightarrow 0$

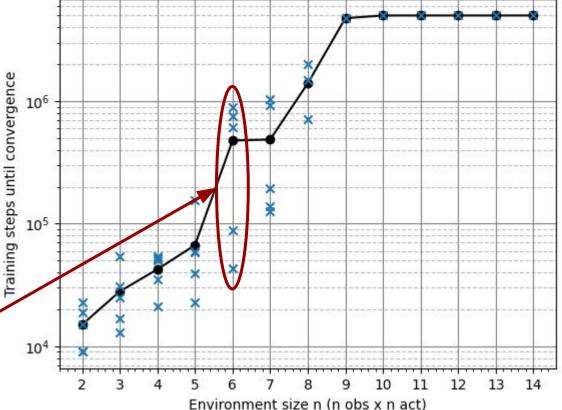
Training PPO on RandomEnv with increasing complexity

- RandomEnv: creation of linear dynamics \rightarrow Can be set to an Identity matrix
 - Why Identity matrix?
 - One-to-one linear orthogonal mapping between the state and actions
 - Most intuitive when debugging
 - When *deep networks* are involved, having "<u>simple</u>" dynamics, does not imply better training
 - Deep networks have non-linear mappings within and is dependent solely on initial weight initialization
- Let M = Number of state dimensions
- Ler N = Number of action dimensions
- Set M=N for square dynamics Benchmark for each RL algorithm
- Instantiate 5 separate environment-agent instances for every $M = N, M \in [2, 3, ..., 14, 15]$
- Set the default hyperparameters to PPO algorithm
 - Stable-baselines3 initial hyper-parameters
- Train PPO agent on $5 \ge 14 = 70$ agents

PPO as RE gets more complex

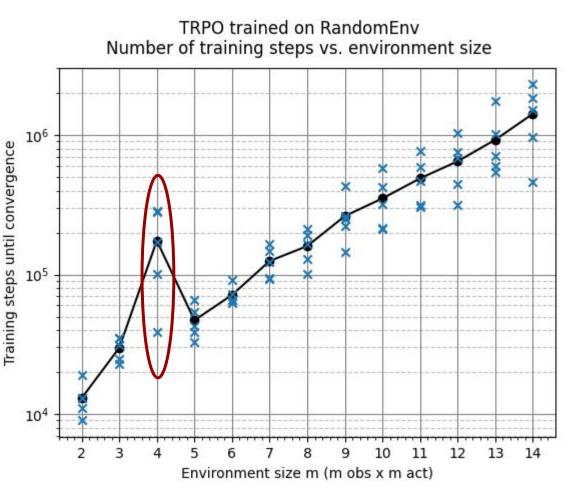
- M: $2 \rightarrow 14$
- **Initial network weights** contribute to the differences in each agent of size
- Environment dynamics fixed for all env sizes $m \in M$
 - Transfer matrix = I (mxm)
- PPO training times blows up exponentially with env size
- **Sporadic spread** in training times
- RE 6x6
 - Training time varies by 1 order of magnitude
 - 100Hz system, training can take between 15 minutes and 3 hours!





TRPO trained on RE with identity transfer matrix

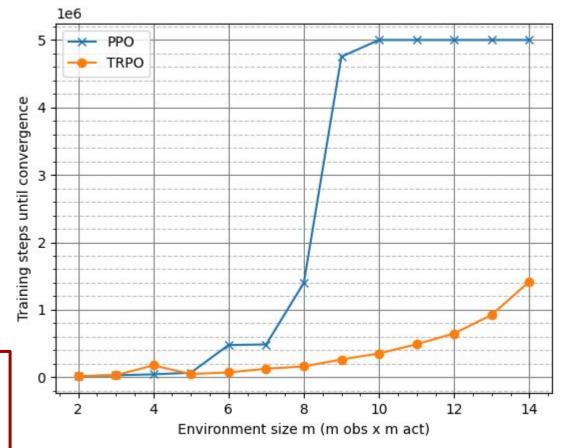
- M: 5→14
- Using same hyperparameters for all runs
- Environment **dynamics fixed** for all env sizes
 - \circ Transfer matrix = I (mxm)
- Trains more predictably than PPO
- Spread in training time increases with larger environments
- Can solve RE 14x14 in approximately 2M training steps



Comparing PPO and TRPO

- Goal <u>was not</u> to find the optimal hyper parameters
 - \circ \quad That would be done by a grid-search
 - PPO might have performed better
- How easy is it to use state-of-the-art RL algorithms '*out of the box*'?
 - TRPO seems to be a better choice
- **BUT**...
 - Implementation of PPO really matters!
- In fact this issue is studied closely, e.g.:

"Implementation Matters in Deep Policy Gradients: A Case Study on PPO and TRPO" Logan Engstrom, et al. ICLR 2020



TRPO trained on different dynamics

- 5 random seeds per environment size
 - Generate 5 different dynamics
- Train 5 TRPO agents, per environment
 - Networks intialised with different seeds
- Larger environments, training time spread can increase significantly
 - Unlucky dynamics
 - Might be fixed with proper hyper parameter tuning, <u>per environment</u>



Key takeaways from these tests

- Results show that expected training time until convergence to an optimal policy increases exponentially with environment size
 - But **training becomes unstable** in large environments
 - TRPO is reasonably robust to hyperparameter tuning, but suffers in large environments
- State-of-the-art RL algorithms might not be suitable for online BBF systems
 - Too sample inefficient
 - Difficult to use and tune
 - Highly susceptible to code-level design choices
- Do we really need deep networks in BBF systems?

Simplification of RE into discrete actions

5/5

Back to basics

- RL without deep networks?
 - Tabular methods
 - Linear function approximation

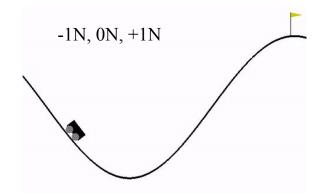
• Strong theoretical convergence guarantees only exist for tabular RL

- Can only be used with discrete state-action space
- Finite number of state-action pairs possible
- Very limited environment size
- RL with **linear approximation** also has some guarantees
 - Hand-designed features
 - Continuous states possible
- Using simpler agents might be useful for real operation in BBF systems
 - Deterministic training time/number of training interactions
 - Monotonic policy improvement
 - Safe policies
 - Meaningful exploration

RE with Discrete Actions (REDA)

- RE was converted to use **discrete actions** (REDA)
 - Same action strategy as OpenAI Gym MountainCar environment
 - Each action dimension can be one of three values $[-\epsilon, 0, +\epsilon]$
 - $\circ ~~\epsilon \rightarrow$ Tuned such that at least an episode has more than 1 step
 - *i.e. one-step solutions are made less likely*
 - Enforcing a precision with which the policy can change the state
 - Makes the MDP much simpler to solve
- We can use REDA to analyse **fundamental RL ideas**
 - Episodic vs infinite-horizon environment
 - Epsilon-greedy vs Boltzmann policies
 - Regret upper confidence bounds

- <u>Policy type 1:</u> All action permutations \rightarrow Cardinality(A) = 3^N
 - $\blacksquare E.g. \textbf{REDA2x2: card}(\{\{-\varepsilon,-\varepsilon\},\{-\varepsilon,0\},\{-\varepsilon,+\varepsilon\},\{0,-\varepsilon\},\dots,\{+\varepsilon,0\},\{+\varepsilon,+\varepsilon\}\}) = 27 \text{ possible actions}$
- Policy type 2: Canonical vectors + do nothing action \rightarrow Cardinality(A) = 2*N + 1 • E.g. *REDA2x2: card({{-\varepsilon, 0}, {+\varepsilon, 0}, {0, -\varepsilon}, {0, +\varepsilon}, {0,0}}) = 5 possible actions*
- The simplest stable RL algorithm using temporal difference learning
 - State-Action-Reward-State-Action (SARSA)
- SARSA + REDA tests follow



Linear RL on REDA

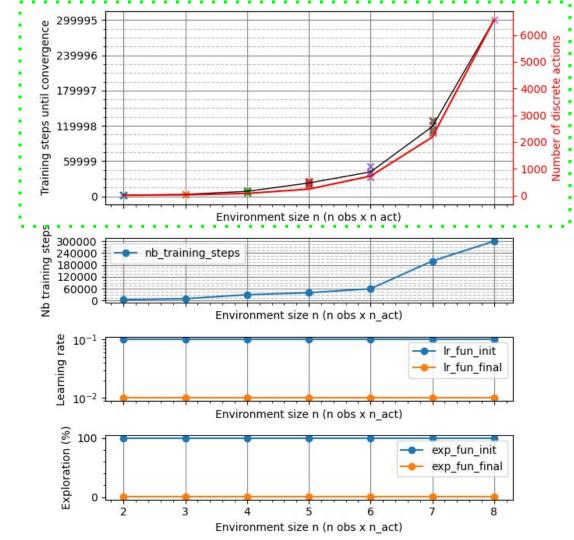
- REDA has continuous states and discrete actions
- Discrete actions either **policy type 1** (all permutations) or **policy type 2** (canonical actions)
- What does **linear** mean?
 - V and Q functions are a linear in the **features of the state**
 - In deep networks, **last layer is linear** on output of last hidden layer
- What are features of the state?
 - Recall:
 - Policy function <u>maps state to action</u>
 - When applying deep networks for the policy of an agent in Deep RL:
 - All layers before the <u>last linear layer</u> represent the features of the state
- If we have a feature function: $\Phi(s) \in \mathbb{R}^d$

• Value can be estimated with:
$$v_{\pi}(s) = w^{\mathsf{T}} \cdot \Phi(s)$$

• Greedy policy:
$$\pi(s) = \arg \max_{a} q_{\pi}(s, a) = \arg \max_{a} w_{a}^{\mathsf{T}} \cdot \Phi(s, a)$$

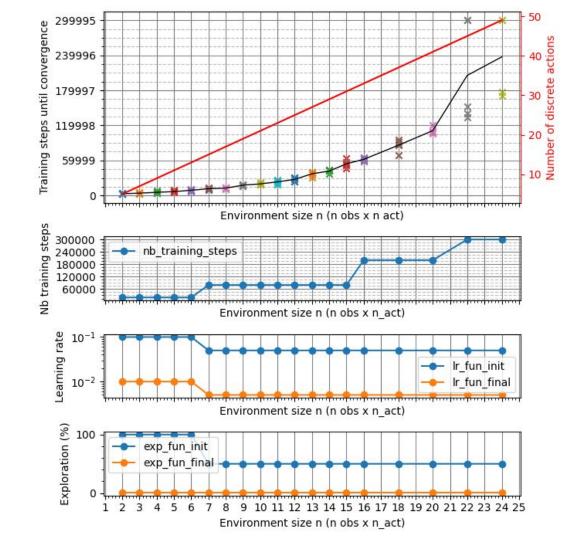
REDA with all action permutations set

- The training times match closely to the training of PPO and TRPO
 - Order of 10⁵ steps
- Environments larger than 7x7 suffer from bad sample efficiency
- REDA 7x7 = 2187 actions
- REDA 8x8 = 6561 actions



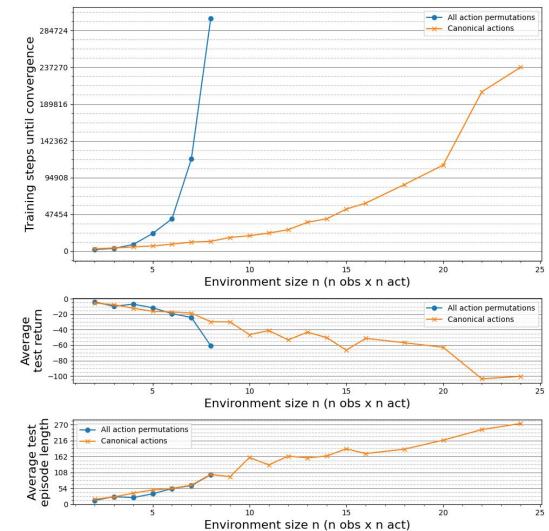
REDA with canonical action set

- Learning rate might have to be reduced with large environments since weights might explode
- Learning and exploration decay was linear and should be adjusted for larger environments
- REDA $7x7 \rightarrow$ REDA 15x15
 - Same hyperparameters



Comparing all action permutations vs canonical action set

- Canonical action set more sample efficient
- Optimal policy with canonical action set has similar episode lengths to policy with all action permutations
- So we can use REDA with very low number of actions
- Note episodes become longer with larger env size

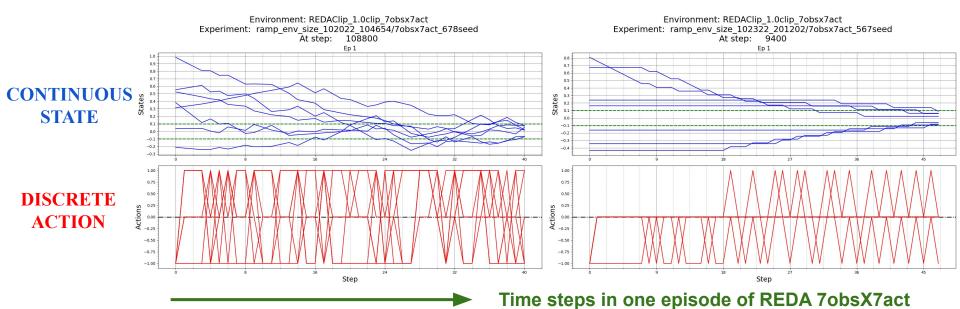


Comparing the two REDA approaches

- By playing some episodes we can look at the two different type of policies
 - Both policies reach optimal states after approx. the same number of steps
- Showing agents trained on **REDA 7x7**
- By using canonical action set: ~10x faster to train

ALL ACTION PERMUTATIONS @ TRAINING STEP 108800

CANONICAL ACTION SET @ TRAINING STEP 9400



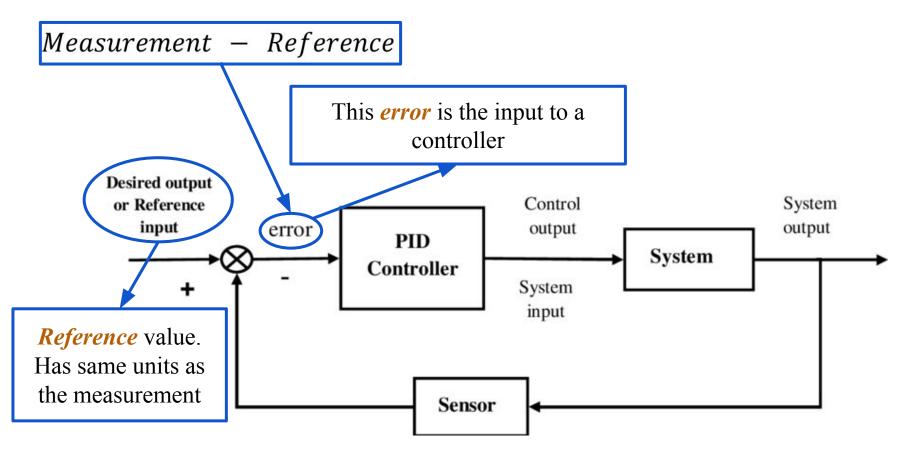
Summary and future work

- Started with feasibility study of RL on Tune feedback system
- Created a generalised environment which matches the operation of a BBF system
- Tested performance of state-of-the-art deep RL algorithms on REs of different complexities
 - Found to be unreliable to train
 - Difficult to make them work in real operation
- Since guarantees only exist only for tabular RL and linear function approximation
 - We use SARSA to train on REDAs of different complexities
- For small enough problems (~< REDA 25x25), you can achieve good sample efficiency compared to state-of-the-art
- Any suggestions are welcome!

Thank you! *Questions?*

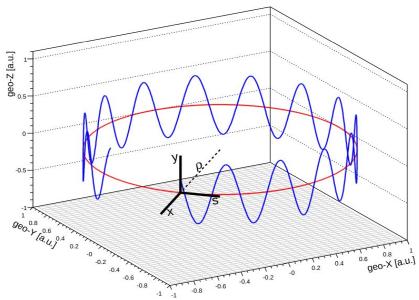
Extra slides

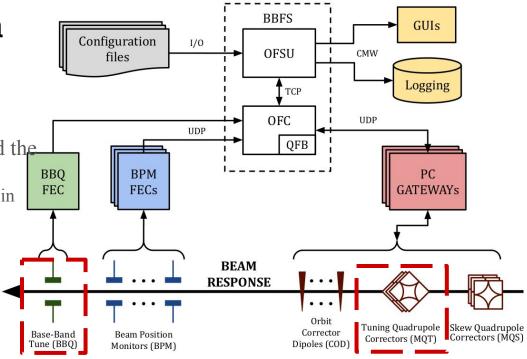
What are feedback systems: *E.g. PID Controller*



Tune feedback (QFB) system

- **Tune** related to **number of transverse oscillations** of a particle per turn in the accelerator
- Tune is measured for the horizontal (x) and the vertical (y) plane respectively
 - 2 measurements of tune per beam (2 beams in LHC)





- The Large Hadron Collider (LHC) BBF system by LHC Long Shutdown 2
 - Highlighted systems are part of QFB

DeepREL

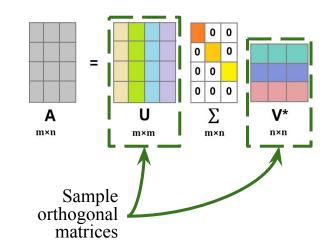
- Continue looking at the performance of RL agents on BBF controllers
- All beam-based feedback systems rely on 2D matrix
 - Linear dynamics model
 - Sometimes number of eigenvalues is controlled to globalise correction localised correction results in dramatic corrections to magnets
- Some BBF systems in the LHC have 1000s of states and 100s of actions
 - E.g. Orbit Feedback (OFB) system controlling position of beam in the beam pipe
- Can state-of-the-art RL handle such a system with linear dynamics?

RL motivation

- Started as an **explorative study** on Tune feedback system
- Finding **optimal response** in an unknown environment
- Preliminary offline tests show potential improvement of RL agent compared to standard controller
- This work looks at expanding the use of RL to larger systems

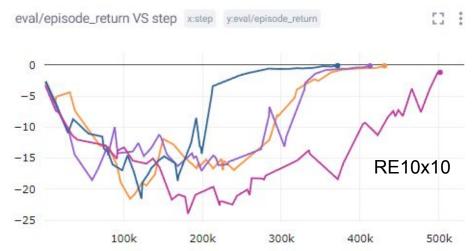
RE dynamics

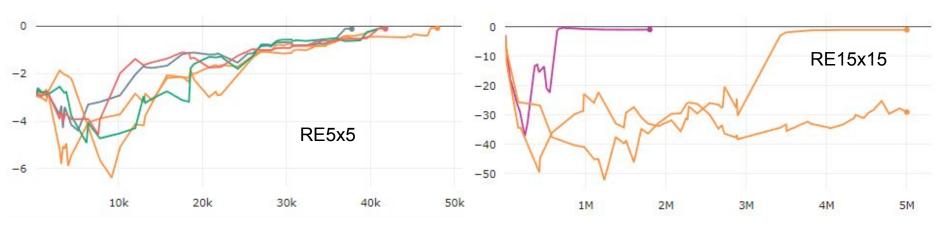
- When modelling a physical system **linearly** we obtain a dynamics matrix
- We can use Singular Value Decomposition (**SVD**) to find inverse matrix
 - Pseudo-inverse if number of states != number of actions: $A \cdot A^{-1} = I$
 - Gives control on localisation/globalisation of corrections
 - Used in LHC BBFs
- Linear model is **factorised**
 - $A = U\Sigma V^{\mathsf{T}}$, where U & V are unitary matrices
 - I.e. inverse becomes trivial: $A^{-1} = V \Sigma^{-1} U^{\top}$
 - Factored matrices are real-valued; i.e. U & V are orthogonal matrices
- We can **sample** new linear systems
 - Invertible dynamics
 - Easy to create different size environments
 - Change random seed to create different environments



Training plots from TRPO

• Showing average return obtained greedily during evalutation





Different types of RL algorithms

- Trust region algorithms
 - Updates to the parameters occur within local neighbourhood to ensure smooth policy transitions
- Trust-Region Policy Optimization (TRPO)
 - Constrains the action conditional probability distribution from the policy
 - Kullbeck-Leibler divergence constraint between policy updates
 - Uses an approximation of the lower bound expected return from a policy
- Proximal Policy Optimization (PPO)
 - Attempts to **simplify** TRPO
 - **Constrains policy parameter space** between updates
 - With deep networks there may be non-linear dependencies between policy parameters and outputs
- Normalised Advantage Functions (NAF)
 - Analytical formulation of Q-Function
 - Off-Policy algorithm can use experience obtained from an unknown policy
 - Can be combined with advances made in deep off-policy RL algorithms; e.g. Twin-Delayed Deep Deterministic policy gradient (TD3)
 - Promising results from QFB study

Different types of RL algorithms

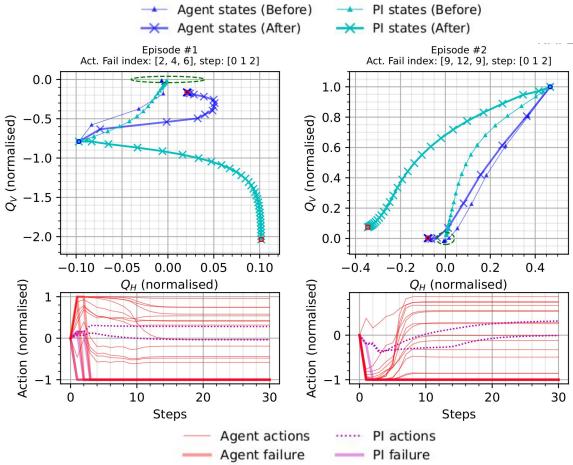
- Deterministic policy gradient theorem
- Deep Deterministic Policy Gradient (DDPG)
 - Deterministic Policy Gradient theorem: Equivalent to stochastic policy gradient as the noise goes to zero
- Twin-Delayed Deep Deterministic policy gradient (TD3)
 - Advances to DDPG algorithm
 - Train two Q networks; choose the smallest; minimise overestimation bias
 - Delayed target Q network updates
 - Target smoothing action noise
- Soft Actor-Critic (SAC)
 - Adding an entropy regularisation term to the PG loss
 - Maximise trade-off between exploration and exploitation
 - Off-policy algorithm

Other tests on QFBEnv

- Normal action noise with varying magnitude:
 - A sweep from $0\% \rightarrow 50\%$ action noise
 - Generated test episodes with greedy policy at 10%, 25% and 50% action noise
- Applying systematic perturbations to the tune
 - 50Hz noise harmonics were messing with the tune estimation
 - Sporadic estimates mislabeled to occur at these harmonics
 - Using worst-case realistic perturbations observed in real tune estimates
 - PPO, NAF2 outperform the PI controller again
 - Deep RL trained agents manage to keep the state from drifiting

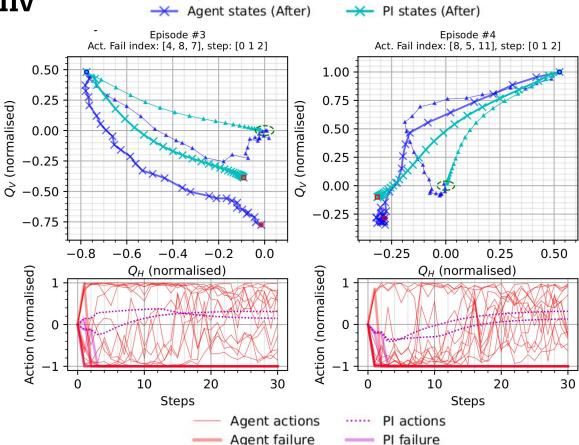
NAF2 Best Policy Evaluation 3 actuator failures

- Off-policy algorithm
- PPO equivalent good sample efficiency
- Undesirable performance compared to optimal policy
 - Optimal derived from transition matrix
 - Actions do not decay proportionally to state: $||A|| \propto ||S||$
- Needs well-tuned hyper parameters
- Best policy trained by NAF algorithm is not the optimal policy



Model-based RL on QFBEnv

- Training of an uncertainty aware model with a crude approximation through network ensembles
- To the right: AE-DYNA with three actuator failures
- Interesting observations:
 - Model-Based RL (MBRL) agents fail similarly to the optimal controller, indicating strong dependence of policy on model
 - Remember: Model-Free RL (MFRL) agents on rely on estimation of expected return



Agent states (Before)

PI states (Before)

How do you implement linear RL?

- Find a suitable feature representation of the state. This is a good time to introduce prior knowledge about the environment
 - E.g. I know that REDA has an objective proportional to the root mean square (RMS) objective Therefore a good feature selection for REDA_MxN would be:

$$\Phi(s_t) \stackrel{\cdot}{=} \left(s_t, RMS(s)\right)^{\mathsf{T}}$$

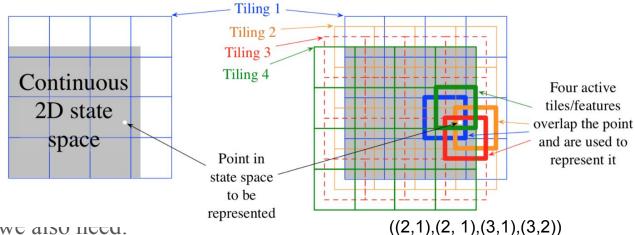
 \circ Therefore we would only require |S| + 1 number of weights for this feature selection:

|W| = |S| + 1

RE as an MDP

- Markov Decision Processes (MDP) are used to formulate RL problems
 - Discrete time, stochastic control process
- How do we design environment?
 - This is critical to what we want to achieve
- Use case 1: BBF is turned on when needed
 - Episodic MDP
 - You can omit discount factor for fixed time episodes
- Use case 2: BBF is on continuously
 - Infinite horizon MDP
 - Discount factor required
 - Numerical problems when exploration is unbounded
- Exploration in a real system needs to be bounded otherwise we risk breaking the machine
 - E.g. Orbit of the beam cannot exist outside the beam pipe!
- Initial states need to be realistic
 - E.g. if the state is 2D and we have 1 action, all the states have to be reachable with the dynamics

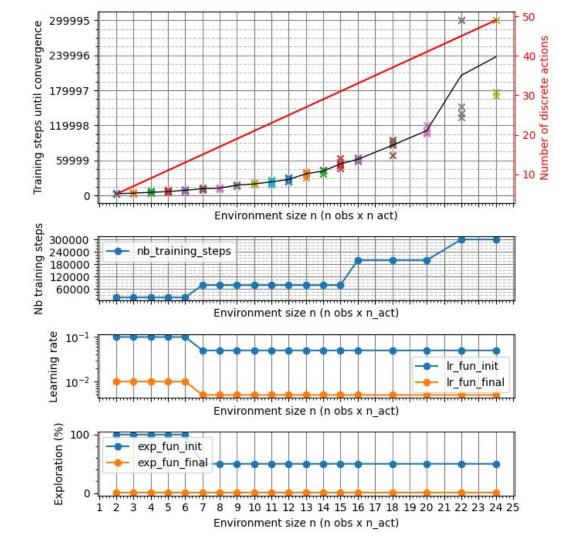
Tabular RL on REDA



- To use tabular RL methods we also need.
 - Discrete representation of the state
- Tile-coding is a good candidate:
 - Non-parametric function approximator
- Memory complexity blows up quickly
 - O(NB_TILINGS x NB_BINS ^ M x |A|)
- Limited to very small environments (< REDA_5x5)

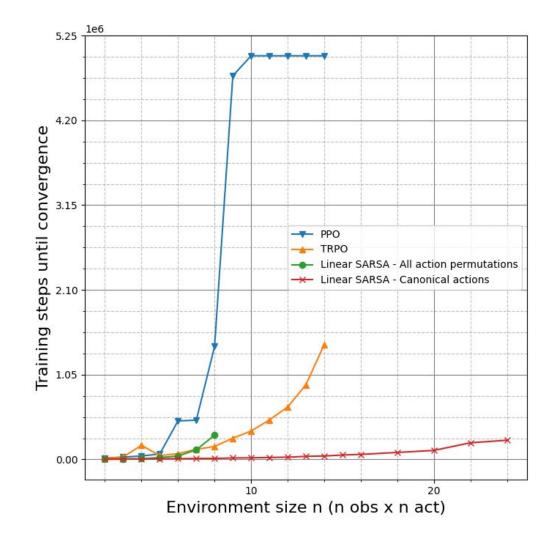
REDA with canonical action set

Large environments
 (>REDA_10x10) require more
 hyperparameter tuning



Comparing Deep RL & Linear RL

- We can improve sample efficiency on large environments
 - Using SARSA
 - Hand-designed features
 - Limiting number of actions



Initialising RE MXN where M < N

