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Continuous Electron Beam Accelerator Facility

CEBAF is a CW recirculating linac utilizing 418 SRF cavities
to accelerate electrons up to 12 GeV through 5-passes

* it is a nuclear physics user-tacility capable of servicing
4 experimental halls simultaneously

* the heart of the machine is the SRF cavities




Fault Classification: Defining the Problem

we have the ability to record high- Question #1 Question #2
fidelity data from 12 cryomodules Which of the 8 cavities faulted first? What kind of trip was it

train a model to correctly classity the cavity and type of RF tault given wavetorm data




Motivation for Machine Learning

* laborious for subject matter expert to hand label thousands of events




Motivation for Machine Learning

* laborious for subject matter expert to hand label thousands of events

Post-Run Analysis

* use aggregate statistics for data-driven guidance for maintenance and/or
upgrade activities

Post-Fault Analysis
» provides critical teedback to control room operators

e tault types get mapped to actions tor the operators




Data: Wavetorm Harvester

» wavetorm harvester was developed to capture RF time-series signals after a

tfault and write them to file tor later analysis
v each of the 17 harvested wavetorm signals is 8,192 points long
v trigger set such that 94% of the recorded data precedes the fault and 6% aftter
v' pre-tfault data provides valuable information about the root cause of the trip

fault event

streaming data

8,192 samples X 0.2 ms/sample = 1.64 seconds
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ML Model Performance

models were applied to data collected from March 10-24, 2020

312 tault events were analyzed by the models
summary of model performances compared to labeled data

Agree Disagree Total

Cavity Model 265 47 312
Fault Model 244 68 312

CCIVH'y m Od el accuracy: 84 . 9% PHYSICAL REVIEW ACCELERATORS AND BEAMS 23, 114601 (2020)

Superconducting radio-frequency cavity fault classification
using machine learning at Jefferson Laboratory

° -FO U H- m Od el O CCU rO Cy: 7 8 . 2 % Chris Tennant®, Adam Carpenter, Tom Powers,

Anna Shabalina Solopova®, and Lasitha Vidyaratne
Jefferson Laboratory, Newport News, Virginia 23606, USA

Khan Iftekharuddin
Old Dominion University, Norfolk, Virginia 23529, USA




Visualization and Communication

* for ML models to be effective, information must be communicated clearly and concisely

e visualize spatial and temporal nature of model predictions
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Machine Learning - Deep Learning

* benetits

incorrect

correct |
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in Artificial Intelligence do

Deep Learning Based
Superconducting Radio-Frequency
Cavity Fault Classification at Jefferson

Laboratory
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Machine Learning - Deep Learning

* benetits

incorrect

* architectures explored
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Dimensionality Reduction: Visualize Runs
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Maintaining Model Performance

* most critical challenge is to maintain model performance tfrom one
operational run to the next (work in progress)




Maintaining Model Performance

* most critical challenge is to maintain model performance tfrom one
operational run to the next (work in progress)

1. Feature Extraction

train the fine-tune the
model from pre-trained

2. Fine-Tune a Pre-Trained Model scratch model

e
a
£
=
S

fine-tune the

output dense
layer of the pre-
trained model

fine-tune lower
layers of the pre-
trained model

size 0

3. Train Some Layers While Freezing Others

>

data similarity
https://tinyurl.com/yck4kzuk
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Fault Classification > Fault Prediction

* small portion of wavetorms around fault event are used for training classitiers
v'uses static datasets

* modifications to LLRF system will allow us to continuously stream data

* investigate it data prior to fault contains enough information to predict event

offline training

dicti
SRU@ErI e Model A: fault prediction (discriminate between “stable” and “impending”)

Model B: fault-type prediction (classify fault)

discard
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Model A: Binary Clussifier
mm

Datasets A,B,C

t=-1435ms
Dataset D T.02

F'3 o
real” normal

Datasets A,B,C 1.03

Dataset D T.04

slow faults

Datasets A,B,C 1.05
R Lo slow vs fast tault types

Defasets ABC 107 “real” vs “quasi”-normal
Dataset D 1.08

£ -4
quasi” normal

CNN+LSTM - ' ]COUH signol WiﬂdOW

Datasets A,B,C 1.09

e o dataset date

Mo M
real” normal

Datasets A,B,C T.11

Dataset D T.12

fast faults
Datasets A,B,C T.13

1= -1435 ms
Dataset D T.14
“quasi” normal

Datasets A,B,C T.15
Dataset D T.16
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Model A: Binary Classifier

Fault Classification Best Model

Normal signal
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Model A: Binary Classifier

Fault Classification Best Model

Fault Classification Best Model

Normal signal

Normal signal

True label

True label
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Faulty signal
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Model B: Fault Classifier

* can data prior to event accurately predict the fault type?
v' use saved waveforms

t = -1400 ms
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Model B: Fault Classifier

* can data prior to event accurately predict the fault type?
v' use saved waveforms

t = -1200 ms
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Model B: Fault Classifier

* can data prior to event accurately predict the fault type?
v' use saved waveforms

t = -1000 ms
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* can data prior to event accurately predict the fault type?
v' use saved waveforms
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Model B: Fault Classifier

0 ms prior to fault

Fault Classification Best Model
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Model B: Fault Classifier

20 ms prior to fault

Fault Classification Best Model
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Model B: Fault Classifier

50 ms prior to fault

Fault Classification Best Model
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Model B: Fault Classifier

100 ms prior to fault

Fault Classification Best Model
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Model B: Fault Classifier

100 ms prior to fault

Fault Classification Best Model
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Model B: Fault Classifier

e initial results suggests that for some fault types, prediction is possible

Microphonics

F1-score

—— 100 ms window
—8— 200 ms window
—0— 300 ms window
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Model B: Fault Classifier

e initial results suggests that for some fault types, prediction is possible
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Field Emission Management

Goal: maintain low levels of FE radiation without invasive interruptions to physics

Description: use ML to model radiation levels and allow for off-line optimization of
gradient distribution, identity cavities where FE onsets have changed

Solution: optimize surrogate model to minimize radiation via gradient reduction

radiation area damaged beamline valve damaged magnet and cables




Field Emission Management: Proof-of-Concept Demonstration

1. set CEBAF to same gradient distribution as September 7 baseline
2. apply model-based optimized gradients to CEBAF

before optimization after optimization
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Field Emission Management: Proof-of-Concept Demonstration

1. set CEBAF to same gradient distribution as September 7 baseline
2. apply model-based optimized gradients to CEBAF

before optimization after optimization
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Cavity Instability Detection

Goal: improve beam availability by automating process of identifying unstable RF cavities

Description: SRF cavities can become unstable without presenting faults, identifying these
unstable cavities with present diagnostics is difficult and time-consuming

Solution: (1) develop and install a new fast DAQ system for the legacy SRF cavities, and
(2) apply ML to identity unstable cavities

.g_ej,ﬁ;gon Lab



Importance of Having the Right Data

* accelerators produce a lot of data

* however, it's not all useful for ML applications

* ML projects at JLab only possible because of newly available data

*P. Degtiarenko, US Patent 10,281,600



Importance of Having the Right Data

* accelerators produce a lot of data

* however, it's not all useful for ML applications

* ML projects at JLab only possible because of newly available data

€100 cavity fault classification - digital LLRF + waveform harvester

€100 cavity fault prediction - digital LLRF + streaming data
field emission management > NDX detectors*
cavity instability detection > fast DAQ

* data reliability is criticall

*P. Degtiarenko, US Patent 10,281,600



Summary

* JLab has several active ML projects addressing SRF operation at CEBAF,
which are at various stages of maturity
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Summary

* JLab has several active ML projects addressing SRF operation at CEBAF,
which are at various stages of maturity

proof-of-concept deployed system » mainfained system

encouraging results on “slow” data
how to update model?

encouraging initial results on saved waveforms

how to maintain performance over time¢
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Summary

* JLab has several active ML projects addressing SRF operation at CEBAF,
which are at various stages of maturity

proof-of-concept deployed system » mainfained system

encouraging results on “slow” data
how to update model?

encouraging initial results on saved waveforms

how to maintain performance over time¢

* have — or will have — sources of high quality data to enable continued work
in this area for the foreseeable tuture

* getting buy-in from all groups involved is still a challenge
46 .g_ej,ﬁ/egon Lab




Thank You.

tennant@ilab.org



Mobile Diagnostic for Accelerator Operations

* Goal: develop a remotely controlled, semi-autonomous, mobile
diagnostic that can be integrated into accelerator operations

* the mobile diagnostic system would provide potential benetit by:

by enabling
remote inspection of beamline components
and reducing the need tor short, controlled CASSIOPeiA
accesses to the accelerator tunnel, and el
. . . Collaborative Autonomous Sensor
redUC|ng 'I'he time reqUH’ed to peﬂcorm System for Intelligert Operation of
standard radiation surveys e Acceleratorn

by acquiring
dynamic measurements, e.g. beam loss
and radiation measurements, under
operational  conditions  at  arbitrary
locations alon g the beamline e, . P G BB Lt

Thomas Jefferson National Accelerator Facility

D. Conner, W. Phelps
Christopher Newporf University
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