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• CEBAF is a CW recirculating linac utilizing 418 SRF cavities 

to accelerate electrons up to 12 GeV through 5-passes 

Continuous Electron Beam Accelerator Facility

• it is a nuclear physics user-facility capable of servicing 

4 experimental halls simultaneously

• the heart of the machine is the SRF cavities



we have the ability to record high-

fidelity data from 12 cryomodules
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Question #1

Which of the 8 cavities faulted first?

Question #2

What kind of trip was it?

17 signals/cavity × 8 cavities = 136 signals 17 signals
1 cryomodule = collection of 8 cavities

Fault Classification: Defining the Problem

train a model to correctly classify the cavity and type of RF fault given waveform data
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• laborious for subject matter expert to hand label thousands of events

Motivation for Machine Learning
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• laborious for subject matter expert to hand label thousands of events

Post-Run Analysis

• use aggregate statistics for data-driven guidance for maintenance and/or

upgrade activities

analysis of fall 2018 data indicated three cryomodules in the South Linac were prone

to microphonic-based faults  provided justification to perform microphonics

hardening (installing tuner dampers)  reduced microphonics-based trip rates 

gradients could be increased in those cryomodules

Post-Fault Analysis

• provides critical feedback to control room operators

• fault types get mapped to actions for the operators

“if Trip A happens X times within Y minutes, drop gradient in the cavity by Z MV/m”

Motivation for Machine Learning
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… …

fault event

Data: Waveform Harvester

streaming data

8,192 samples × 0.2 ms/sample = 1.64 seconds

• waveform harvester was developed to capture RF time-series signals after a

fault and write them to file for later analysis

 each of the 17 harvested waveform signals is 8,192 points long

 trigger set such that 94% of the recorded data precedes the fault and 6% after

 pre-fault data provides valuable information about the root cause of the trip
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• models were applied to data collected from March 10-24, 2020

 physics run was prematurely ended due to COVID-19

• 312 fault events were analyzed by the models

• summary of model performances compared to labeled data

• cavity model accuracy: 84.9%

 testing accuracy: 87.9%

• fault model accuracy: 78.2%

 testing accuracy: 87.7%

ML Model Performance

Agree Disagree Total

Cavity Model 265 47 312

Fault Model 244 68 312
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Visualization and Communication

• for ML models to be effective, information must be communicated clearly and concisely

• visualize spatial and temporal nature of model predictions
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Visualization and Communication

• for ML models to be effective, information must be communicated clearly and concisely

• visualize spatial and temporal nature of model predictions

operator’s attention
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• benefits

 avoid feature extraction

 computationally faster (needful for fault prediction)

 allow for uncertainty quantification

Machine Learning  Deep Learning

incorrect

correct
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• benefits

 avoid feature extraction

 computationally faster (needful for fault prediction)

 allow for uncertainty quantification

• architectures explored

 recurrent NN

 CNN

 LSTM + CNN

Machine Learning  Deep Learning

incorrect

correct
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Dimensionality Reduction: Visualize Runs

cryomodule 1L22

cryomodule 1L25

cryomodule 1L24

cryomodule 1L26
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Dimensionality Reduction: Visualize Runs

cryomodule 1L22

cryomodule 1L25

cryomodule 1L24

cryomodule 1L26
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• most critical challenge is to maintain model performance from one

operational run to the next (work in progress)

Maintaining Model Performance
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• most critical challenge is to maintain model performance from one

operational run to the next (work in progress)

Maintaining Model Performance

1. Feature Extraction

Remove the output layer and use the entire network

as a fixed feature extractor for the new dataset

2. Fine-Tune a Pre-Trained Model

Fine-tune the weights of the pre-trained network (all

layers)

3. Train Some Layers While Freezing Others

Freeze weights of earlier layers and fine-tune the

weights of later layers

train the 

model from 

scratch

fine-tune the 

pre-trained 

model

fine-tune lower 

layers of the pre-

trained model

fine-tune the 

output dense 

layer of the pre-

trained model
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data similarity

https://tinyurl.com/yck4kzuk

https://tinyurl.com/yck4kzuk
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Fault Classification  Fault Prediction

• small portion of waveforms around fault event are used for training classifiers

uses static datasets

• modifications to LLRF system will allow us to continuously stream data

• investigate if data prior to fault contains enough information to predict event

C100 cryomodule

LLRF

storage

partial

Model A

prediction

discard

offline training

Model B

Model A: fault prediction (discriminate between “stable” and “impending”)

Model B: fault-type prediction (classify fault)
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Model A: Binary Classifier

• slow vs fast fault types

• “real” vs “quasi”-normal

• fault signal window

• dataset date
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Model A: Binary Classifier

normal

Normal

Faulty

-5 ms

faulty

100 ms
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Model A: Binary Classifier

normal

Normal

Faulty

-5 ms

faulty

100 ms

Normal

Faulty

-1435 ms

quasi-normal

-5 ms

faulty

100 ms
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Model B: Fault Classifier

• can data prior to event accurately predict the fault type?

 use saved waveforms

t = -1400 ms
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Model B: Fault Classifier

• can data prior to event accurately predict the fault type?

 use saved waveforms

t = -1200 ms
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Model B: Fault Classifier

• can data prior to event accurately predict the fault type?

 use saved waveforms

t = -1000 ms
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Model B: Fault Classifier

• can data prior to event accurately predict the fault type?

 use saved waveforms

t = -800 ms
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Model B: Fault Classifier

• can data prior to event accurately predict the fault type?

 use saved waveforms

t = -600 ms
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Model B: Fault Classifier

• can data prior to event accurately predict the fault type?

 use saved waveforms

t = -400 ms
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Model B: Fault Classifier

• can data prior to event accurately predict the fault type?

 use saved waveforms

t = -200 ms
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Model B: Fault Classifier

0 ms prior to fault
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Model B: Fault Classifier

20 ms prior to fault
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Model B: Fault Classifier

50 ms prior to fault
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Model B: Fault Classifier

100 ms prior to fault
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Model B: Fault Classifier

100 ms prior to fault
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Model B: Fault Classifier

• initial results suggests that for some fault types, prediction is possible

Microphonics
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Model B: Fault Classifier

• initial results suggests that for some fault types, prediction is possible

Microphonics Electronic Quench
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Field Emission Management

Goal: maintain low levels of FE radiation without invasive interruptions to physics

Description: use ML to model radiation levels and allow for off-line optimization of 

gradient distribution, identify cavities where FE onsets have changed

Solution: optimize surrogate model to minimize radiation via gradient reduction

damaged beamline valveradiation area damaged magnet and cables
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Field Emission Management: Proof-of-Concept Demonstration

1. set CEBAF to same gradient distribution as September 7 baseline

2. apply model-based optimized gradients to CEBAF

before optimization after optimization

(courtesy A. Carpenter)
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Field Emission Management: Proof-of-Concept Demonstration

1. set CEBAF to same gradient distribution as September 7 baseline

2. apply model-based optimized gradients to CEBAF

12 rem/hour decrease for 5 MV/m reduction in gradient

before optimization after optimization

(courtesy A. Carpenter)
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Cavity Instability Detection

Goal: improve beam availability by automating process of identifying unstable RF cavities

Description: SRF cavities can become unstable without presenting faults, identifying these

unstable cavities with present diagnostics is difficult and time-consuming

Solution: (1) develop and install a new fast DAQ system for the legacy SRF cavities, and

(2) apply ML to identify unstable cavities

RF Analyzer Tool
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• accelerators produce a lot of data

 CEBAF continuously archives 300,000+ signals

• however, it’s not all useful for ML applications

• ML projects at JLab only possible because of newly available data

Importance of Having the Right Data

*P. Degtiarenko, US Patent 10,281,600
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• accelerators produce a lot of data

 CEBAF continuously archives 300,000+ signals

• however, it’s not all useful for ML applications

• ML projects at JLab only possible because of newly available data

C100 cavity fault classification  digital LLRF + waveform harvester

C100 cavity fault prediction  digital LLRF + streaming data

field emission management  NDX detectors* 

cavity instability detection  fast DAQ

• data reliability is critical!

Importance of Having the Right Data

*P. Degtiarenko, US Patent 10,281,600
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• JLab has several active ML projects addressing SRF operation at CEBAF, 

which are at various stages of maturity

Summary
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• JLab has several active ML projects addressing SRF operation at CEBAF, 

which are at various stages of maturity

Summary

proof-of-concept deployed system maintained system
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• JLab has several active ML projects addressing SRF operation at CEBAF, 

which are at various stages of maturity

Summary

cavity instability detection encouraging results on “slow” data

field emission management how to update model? 

fault prediction encouraging initial results on saved waveforms 

fault classification how to maintain performance over time? 

proof-of-concept deployed system maintained system
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• JLab has several active ML projects addressing SRF operation at CEBAF, 

which are at various stages of maturity

• have – or will have – sources of high quality data to enable continued work 

in this area for the foreseeable future

 for systems in place: maintaining reliability of data is a challenge

 for systems in production: challenges with supply chain issues

Summary

cavity instability detection encouraging results on “slow” data

field emission management how to update model? 

fault prediction encouraging initial results on saved waveforms 

fault classification how to maintain performance over time? 

proof-of-concept deployed system maintained system
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• JLab has several active ML projects addressing SRF operation at CEBAF, 

which are at various stages of maturity

• have – or will have – sources of high quality data to enable continued work 

in this area for the foreseeable future

 for systems in place: maintaining reliability of data is a challenge

 for systems in production: challenges with supply chain issues

• getting buy-in from all groups involved is still a challenge

Summary

cavity instability detection encouraging results on “slow” data

field emission management how to update model? 

fault prediction encouraging initial results on saved waveforms 

fault classification how to maintain performance over time? 

proof-of-concept deployed system maintained system
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Thank You.

tennant@jlab.org
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• Goal: develop a remotely controlled, semi-autonomous, mobile

diagnostic that can be integrated into accelerator operations

• the mobile diagnostic system would provide potential benefit by:

Mobile Diagnostic for Accelerator Operations

reducing accelerator downtime by enabling

remote inspection of beamline components

and reducing the need for short, controlled

accesses to the accelerator tunnel, and

reducing the time required to perform

standard radiation surveys

reducing machine tuning-time by acquiring

dynamic measurements, e.g. beam loss

and radiation measurements, under

operational conditions at arbitrary

locations along the beamline


