Beam-based RF Station Fault Identification at LCLS

R. Humble¹, F. O'Shea², W. Colocho², M. Gibbs², H. Chaffee², E. Darve¹, D. Ratner² ¹ Institute for Computational and Mathematical Engineering, Stanford University ² SLAC National Accelerator Laboratory

> SLAC NATIONAL ACCELERATO LABORATORY

Outline

- 1. Overview: Anomalies at LCLS
- 2. Deep Dive: RF Station Fault Identification
- 3. Extension Work: CovAD

Anomalies at LCLS

LCLS

- Linac Coherent Light Source (LCLS) is a hard X-ray FEL
- Aim is to deliver an X-ray laser to users around the clock
- User experiments demand stability
- Produces over 200,000 data streams

Anomalies at LCLS

Anomalies vary in degree of impact

- 1. Downtime (beam goes offline)
 - ~3% of availability lost to unplanned downtime caused by faults
 - >180 hours
 - 3+ full user experiments equivalent

2. FEL performance degradation

- Unstable beam causes problems for users
- LCLS anomalies → noise/anomalies in user data

There are lots of LCLS failure modes!

To guard against anomalies, operators

- Effectively limit the operational range of accelerator
- Hold certain components (e.g., spare RF stations) in reserve

Deep Dive: RF Station Fault Identification

RF Station Faults

- Accelerator is powered by RF stations
 - 82 stations
 - Split across 4 regions (L0-L3)

- RF station anomalies are a known, high-priority failure mode
- Research goals:
 - 1. Identify anomalies due to RF stations
 - 2. Identify the origin of the fault (e.g., which RF station failed and when)

Existing System

Current detection process is largely manual for operators

- Drawbacks
 - 1. Requires human attention for a routine activity
 - 2. Only addresses significant/prolonged anomalies

RF Station Diagnostics

- Several diagnostics per RF station already exist
- Shortcomings:
 - 1. Limited bandwidth
 - 2. Diagnostics are often incorrect

• Diagnostics \rightarrow fault attribution

Beam Data

- Beam position and charge measurements
- Shortcomings:
 - 1. No direct attribution info
 - 2. Sensitive to other failure modes
- Beam data → fault verification

Need both signals to corroborate the anomaly

not synchronous.

** Gray region is maximum timing

Beam-based RF Station Fault Identification

Fully automated method

1. Candidate identification

- Uses diagnostic data
- Finds candidate anomalies
- Custom built rules for each diagnostic

2. Candidate confirmation

- Uses beam data from dispersive regions (i.e., sensitive to energy changes)
- Unsupervised time-series method
 - Based on robust z-scores
 - Aggregates scores across BPMs to boost signal-to-noise ratio

Results

- Study period: ~2 months in Winter 2020-2021
- Evaluation: Hand-labeled every anomaly candidate

Variant	Precision	Anomalies Found
Only AMM ¹ diagnostic	0.31	385
AMM ¹ + Beam data	0.91	368
AMPL ² + Beam data	0.88	504

- Takeaways
 - Reduce false positive rate by 20x by checking AMM with beam data
 - Only reduce AMM-based anomalies found by 4% with beam data
 - Switch to AMPL diagnostic increases anomalies found by 44%

¹ AMM: Amplitude mean out of tolerance (binary-valued) ² AMPL: Amplitude (real-valued) Stanford University

RF Station Attribution

•

•

Study period: Nov. 2020 to Feb. 2022¹

	Variant		Anomalies Found		
	AMM + Beam dat	a	1666		
	AMPL + Beam da	ta	3968		
Equivalent station and Top-5 RF s for ~36% o anomalies	to 2-5 RF malies per day tations account f identified	400 - si 300 - su 200 - 200 - 100 -	Anomalies from AMM Anomalies from both Anomalies from AMPL	- 0.02 - 0.07 - 0.06 - 0.02 - 0.04 - 0.02 - 0.02	5 ε 4 5 5 9 2 8 Fraction of Anomalies 2 8

Klystron Number

¹ Only contains 80 days worth of runtime due to various filtering criteria

Stanford University

0.01

Extension Work: CovAD

CovAD: Covariance Learning for Unsupervised AD

- Our RF station method was fundamentally solving a labeling problem
 - Human labels don't widely exist and are time-consuming
 - Raw diagnostics alone led to, at best, noisy labels
 - Beam measurements were used to corroborate the bad labels
 - Needed a lot of LCLS knowledge and custom anomaly methods
- We can rephrase our problem in a more general framework

CovAD

- Assume we have candidate algorithms $A(\theta_s)$ and $A(\theta_q)$ to identify anomalies in each stream
- Only joint events are deemed anomalies
- Better coincidence rate → higher₃ Que precision
- More coincidences → higher recall
- Does NOT require labels!

CovAD

- Suppose null hypothesis that s and q are independent and anomalies are rare
- We can then define an *unsupervised* analogue to recall
 - $J(\theta_s, \theta_q)$: number of joint events
 - $N(\theta_s, \theta_q)$: number of joint events under a null hypothesis
 - $R(\theta_s, \theta_q)$: estimate of true number of anomalies detected (analogous to recall)
- Which gives

$$R(\theta_s, \theta_q) = cov\left(A_{\theta_s}, A_{\theta_q}\right) = \sum_i A_{\theta_s}(s_i) A_{\theta_q}(q_i) - \left(\frac{1}{n}\sum_i A_{\theta}(s_i)\right) \left(\sum_i A_{\theta_q}(q_i)\right)$$

CovAD

- **Method**: Maximize the covariance $cov(A_{\theta_s}, A_{\theta_a})$
- Upon convergence, both algorithms $A(\theta_s)$ and $A(\theta_q)$ identify features that predict anomalies
 - This is *despite* being fed different inputs
- Equivalent to a clustering method that uses covariance to identify clusters

CovAD: Running on RF Station Faults

- We ran CovAD over the raw RF diagnostics and beam data
- Used two neural networks as the scoring algorithms
- Result: CovAD only labels coincident events as truly anomalous

Thank you!

RF STATION FAULT IDENTIFICATION: HTTPS://ARXIV.ORG/ABS/2206.04626

Appendix

Limiting to "good" beam conditions

- We limit our method to time periods when machine is running at "good" conditions
 - 1. Beam stopper is inactive (STPR:BSYH:2:STD2_IN_A == 0)
 - 2. Beam rate is 120Hz (IOC:BSY0:MP01:PC_RATE == 8)
 - 3. Beam split is 120 Hz HXR/0 Hz SXR (IOC:IN20:EV01:RG02_ACTRATE == 10)
 - 4. Beam is actively logged (BPMS:IN20:221:TMITCUH1H logged at 1Hz)
 5. Beam has "good" charge (BPMS:IN20:221:TMITCUH1H > 0.5e9)
 6. Beam satisfies the above for at least 5 minutes
- Allow temporary (1 minute) violation of conditions 2-5 (machine will automatically respond to "catastrophic" errors; without this condition, we filter out many of the worst faults)

Types of Anomalies

- During hand labeling, we found a natural anomaly categorization:
 - 1. Faults: beam is lost
 - 2. Sustained anomalies: initial deviation followed by a recovery period
- Sustained anomalies accounted for ~60% of all anomalies during the study period
- Most sustained anomalies were likely missed by operators in real-time
 - Short-lived: typically last <10 seconds
 - FEL degradation: causes beam degradation, not cause beam loss

Fault

Sustained Anomaly

ResilientVAE: Unsupervised AD with contaminated data

- We have focused on finding anomalies in a particular subsystem(s)
- But LCLS has a lot of failure modes!
- Can we find general anomalies in the LCLS beam data?
- Can we also attribute the anomaly back to particular beam readings?
- The challenge is that the beam data is
 - **Unlabeled** → no supervised methods
 - High (>500) dimensional → curse of dimensionality for many traditional (distance-based/vector space partitioning) anomaly detection algorithms
 - Contaminated → no "normal" training set exists for one-class classifiers

ResilientVAE

- We propose a variant of a Variational AutoEncoder (VAE)
 - v: cleanliness of full input
 - z: latent code
 - w_d : cleanliness of dth input feature
 - x_d : dth input feature
- Neural network is composed of:
 - $p_{\theta}(x|z)$: encoder
 - $q_{\phi}(z|x)$: decoder
 - $\pi_d(x)$: feature cleanliness
 - $\gamma(x)$: input cleanliness

$$\mathcal{L}(x) = \sum_{i} \gamma(x) \pi_d(x) \mathbb{E}_{q_\phi(z|x)} \left[\log p_\theta(x_d|z) \right] \\ - \lambda_1 \gamma(x) D_{KL} \left(q_\phi(z|x) || p(z) \right)$$

ResilientVAE: Example Anomaly

