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Anomalies at LCLS
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LCLS

« Linac Coherent Light Source (LCLS) is a hard X-ray FEL
« Aim is to deliver an X-ray laser to users around the clock
« User experiments demand stability

* Produces over 200,000 data streams
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Anomalies at LCLS

Anomalies vary in degree of impact
1. Downtime (beam goes offline)

« ~3% of availability lost to
unplanned downtime caused by

faults To guard against anomalies,
e >180 hours operators
« 3+ full user experiments - Effectively limit the operational
equivalent rHanIge oftaf:celerator s
:  Hold certain components (e.g.,
2. FEL performance degradation spare RF stations) in reserve
* Unstable beam causes problems
for users

e LCLS anomalies =2
noise/anomalies in user data

There are lots of LCLS failure modes!
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Deep Dive: RF Station
Fault Identification
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RF Station Faults

« Accelerator is powered by RF stations
- 82 stations
« Split across 4 regions (LO-L3)

206708 Fr 2:(;3 o Beam
21-1/2 24-6 30-8 Dump

Lo BC1 BC2 DL2 free-electron laser
L1 L2 L3 LTUH:250,450 DMPH:502,693

* RF station anomalies are a known, high-priority failure mode
 Research goals:

1. ldentify anomalies due to RF stations

2. ldentify the origin of the fault (e.g., which RF station failed and when)
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Existing System

« Current detection process is largely manual for operators

1. Watch for drop in X-
< ray power

2. After drop, search
for RF stations with

Drawbacks o — 2
1. Requires human attention for a routine activity
2. Only addresses significant/prolonged anomalies Stanford University




RF Station Diagnostics

Several diagnostics per RF
station already exist

Shortcomings:
1. Limited bandwidth
2. Diagnostics are often incorrect

Diagnostics = fault attribution

+

Beam Data

Beam position and charge
measurements

Shortcomings:
1. No direct attribution info

2. Sensitive to other failure
modes

Beam data - fault verification

‘ Need both signals to corroborate the anomaly
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Example
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Beam-based RF Station Fault Identification

Anomaly
- candidate
identification

RF station
diagnostic data

2

Anomaly
confirmation

Beam-baseddata = =

Confirmed anomalies

Fully automated method

Candidate identification

« Uses diagnostic data

* Finds candidate anomalies

e Custom built rules for each diagnostic

Candidate confirmation

* Uses beam data from dispersive
regions (i.e., sensitive to energy
changes)

* Unsupervised time-series method
« Based on robust z-scores

* Aggregates scores across BPMs
to boost signal-to-noise ratio
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Results

« Study period: ~2 months in Winter 2020-2021
- Evaluation: Hand-labeled every anomaly candidate

Variant Precision Anomalies Found
Only AMM! diagnostic 0.31 385
AMM! + Beam data 0.91 368
AMPL? + Beam data 0.88 504

- Takeaways
* Reduce false positive rate by 20x by checking AMM with beam data
* Only reduce AMM-based anomalies found by 4% with beam data
« Switch to AMPL diagnostic increases anomalies found by 44%

1 AMM: Amplitude mean out of tolerance (binary-valued) 2AMPL: Amplitude (real-valued) Stanford University



RF Station Attribution
« Study period: Nov. 2020 to Feb. 20221

Variant Anomalies Found

AMM + Beam data 1666
AMPL + Beam data 3968

mmm Anomalies from AMM 0.08

. Equivalent to 2-5 RF 01 Aromatis fom A
station anomalies per day ;.

- Top-5 RF stations account :
for ~36% of identified
anomalies

NN NN N ~r ! N Ltatetal

o Klysto n Number

1 Only contains 80 days worth of runtime due to various filtering criteria Stanford Un1vers1ty



Extension Work:
CovAD
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CoVvAD: Covariance Learning for Unsupervised AD

« Our RF station method was fundamentally solving a labeling problem
 Human labels don’t widely exist and are time-consuming
* Raw diagnostics alone led to, at best, noisy labels
« Beam measurements were used to corroborate the bad labels
* Needed a lot of LCLS knowledge and custom anomaly methods

 We can rephrase our problem in a more general framework

Classic approach:

Quality (Q) supervised learning » Labels
=~ A

\\\\\ Typical approach:
~ human assigns labels
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CovAD

« Assume we have candidate
algorithms A(6;) and A(6,) to
identify anomalies in each
stream

« Only joint events are deemed |
anomalies 0 20 40 60 80 100

« Better coincidence rate - highers|
precision

« More coincidences - higher
recall 1

2_

0 L T

40 60 80 100
Time
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« Does NOT require labels!




CovAD

Suppose null hypothesis that s and g are independent and anomalies
are rare

We can then define an unsupervised analogue to recall
* J(Bs,68,): number of joint events

* N(65, 6,): number of joint events under a null hypothesis

- R(0s,6,): estimate of true number of anomalies detected (analogous
to recall)

*  Which gives

R(65,60,) = cov (4g,,45,) EAes(sl)Ae (q»—(—er(sl)) (ZA%(ql)
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CovAD

« Method: Maximize the covariance cov (Ags,qu)

- Upon convergence, both algorithms A(6,) and A(Hq) identify features
that predict anomalies

» This is despite being fed different inputs

- Equivalent to a clustering method that uses covariance to identify
clusters
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CovAD: Running on RF Station Faults

« We ran CovAD over the raw RF diagnostics and beam data
« Used two neural networks as the scoring algorithms
* Result: CovAD only labels coincident events as truly anomalous
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Thank you!

RF STATION FAULT
IDENTIFICATION:
HTTPS://ARXIV.ORG/ABS/2206.04626

Stanford University


https://arxiv.org/abs/2206.04626

Appendix
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Limiting to “good” beam conditions

We limit our method to time periods when machine is running at “good”
conditions

1. Beam stopper is inactive (STPR:BSYH:2:STD2_IN_A==0)
2.Beam rate is 120Hz (I0C:BSYO0:MPO0O1:PC_RATE == 8)

3.Beam split is 120 Hz HXR/0 Hz SXR
(IOC:IN20:EV01:RG02_ACTRATE == 10)

4.Beam is actively logged (BPMS:IN20:221: TMITCUH1H logged at 1Hz)
5.Beam has “good” charge (BPMS:IN20:221: TMITCUH1H > 0.5€9)
6. Beam satisfies the above for at least 5 minutes

Allow temporary (1 minute) violation of conditions 2-5 (machine will
automatically respond to “catastrophic” errors; without this condition,
we filter out many of the worst faults)
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Types of Anomalies

During hand labeling, we found a natural anomaly categorization:
1. Faults: beam is lost
2. Sustained anomalies: initial deviation followed by a recovery period

Sustained anomalies accounted for ~60% of all anomalies during the
study period

Most sustained anomalies were likely missed by operators in real-time
« Short-lived: typically last <10 seconds
« FEL degradation: causes beam degradation, not cause beam loss
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Fault
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Sustained Anomaly
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ResilientVAE: Unsupervised AD with contaminated data

 We have focused on finding anomalies in a particular subsystem(s)
 But LCLS has a lot of failure modes!

« Can we find general anomalies in the LCLS beam data?

« Can we also attribute the anomaly back to particular beam readings?

« The challenge is that the beam data is
* Unlabeled - no supervised methods

* High (>500) dimensional - curse of dimensionality for many
traditional (distance-based/vector space partitioning) anomaly
detection algorithms

« Contaminated - no “normal’ training set exists for one-class
classifiers
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ResilientVAE

« We propose a variant of a Variational AutoEncoder (VAE)
 v: cleanliness of full input
 z: latent code
* wy: cleanliness of d" input feature
* x4. d" input feature

« Neural network is composed of:
* pg(x|z): encoder
* q¢(z|x): decoder L(z) =Y 7(@)7a(2)Eqy(epr) 08 po(za]2)]
« 1,(x): feature cleanliness — Mv(®) Dy, (gg(z]2)||p(2))
* y(x): input cleanliness

T ma—mmw
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ResilientVAE: Example Anomaly
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