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Anomalies at LCLS



LCLS

• Linac Coherent Light Source (LCLS) is a hard X-ray FEL

• Aim is to deliver an X-ray laser to users around the clock

• User experiments demand stability

• Produces over 200,000 data streams



Anomalies at LCLS

Anomalies vary in degree of impact

1. Downtime (beam goes offline)

• ~3% of availability lost to 
unplanned downtime caused by 
faults

• >180 hours

• 3+ full user experiments 
equivalent

2. FEL performance degradation

• Unstable beam causes problems
for users

• LCLS anomalies →
noise/anomalies in user data

To guard against anomalies, 
operators

• Effectively limit the operational 
range of accelerator

• Hold certain components (e.g., 
spare RF stations) in reserve

There are lots of LCLS failure modes!



Deep Dive: RF Station 
Fault Identification 



RF Station Faults

• Accelerator is powered by RF stations

• 82 stations

• Split across 4 regions (L0-L3)

• RF station anomalies are a known, high-priority failure mode

• Research goals:

1. Identify anomalies due to RF stations

2. Identify the origin of the fault (e.g., which RF station failed and when)



Existing System

• Current detection process is largely manual for operators

• Drawbacks

1. Requires human attention for a routine activity

2. Only addresses significant/prolonged anomalies

1. Watch for drop in X-
ray power

2. After drop, search 
for RF stations with 
warning/fail status



RF Station Diagnostics

• Several diagnostics per RF

station already exist

• Shortcomings:

1.Limited bandwidth

2.Diagnostics are often incorrect

• Diagnostics → fault attribution

• Beam position and charge 

measurements

• Shortcomings:

1. No direct attribution info

2. Sensitive to other failure 

modes

• Beam data → fault verification

Beam Data

Need both signals to corroborate the anomaly



Example
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* RF Station health is 
not synchronous.

** Gray region is
maximum timing
error.



Beam-based RF Station Fault Identification

• Fully automated method

1. Candidate identification

• Uses diagnostic data

• Finds candidate anomalies

• Custom built rules for each diagnostic

2. Candidate confirmation

• Uses beam data from dispersive 
regions (i.e., sensitive to energy 
changes)

• Unsupervised time-series method

• Based on robust z-scores

• Aggregates scores across BPMs 
to boost signal-to-noise ratio

RF station
diagnostic data

Anomaly 
candidate 

identification

Anomaly 
confirmation

Confirmed anomalies

Beam-based data
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Results

• Study period: ~2 months in Winter 2020-2021

• Evaluation: Hand-labeled every anomaly candidate

• Takeaways

• Reduce false positive rate by 20x by checking AMM with beam data

• Only reduce AMM-based anomalies found by 4% with beam data

• Switch to AMPL diagnostic increases anomalies found by 44%

Variant Precision Anomalies Found

Only AMM1 diagnostic 0.31 385

AMM1 + Beam data 0.91 368

AMPL2 + Beam data 0.88 504

1 AMM: Amplitude mean out of tolerance (binary-valued)    2 AMPL: Amplitude (real-valued)



RF Station Attribution 

• Study period: Nov. 2020 to Feb. 2022 1

Variant Anomalies Found

AMM + Beam data 1666

AMPL + Beam data 3968

• Equivalent to 2-5 RF 

station anomalies per day

• Top-5 RF stations account 

for ~36% of identified 

anomalies

1 Only contains 80 days worth of runtime due to various filtering criteria



Extension Work: 
CovAD



CovAD: Covariance Learning for Unsupervised AD

• Our RF station method was fundamentally solving a labeling problem

• Human labels don’t widely exist and are time-consuming

• Raw diagnostics alone led to, at best, noisy labels

• Beam measurements were used to corroborate the bad labels

• Needed a lot of LCLS knowledge and custom anomaly methods

• We can rephrase our problem in a more general framework

Quality (Q)

Subsystem (S)

Labels

Classic approach: 
supervised learning

Typical approach: 
human assigns labels“Coincidence”



CovAD

• Assume we have candidate 

algorithms 𝐴 𝜃𝑠 and 𝐴 𝜃𝑞 to 

identify anomalies in each 

stream

• Only joint events are deemed

anomalies

• Better coincidence rate → higher 

precision

• More coincidences → higher 

recall

• Does NOT require labels!

Subsystem (S)

tq
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Quality (Q)



CovAD

• Suppose null hypothesis that 𝑠 and 𝑞 are independent and anomalies 

are rare

• We can then define an unsupervised analogue to recall

• 𝐽(𝜃𝑠, 𝜃𝑞): number of joint events

• 𝑁 𝜃𝑠, 𝜃𝑞 : number of joint events under a null hypothesis

• 𝑅 𝜃𝑠, 𝜃𝑞 : estimate of true number of anomalies detected (analogous 

to recall)

• Which gives

𝑅 𝜃𝑠, 𝜃𝑞 = 𝑐𝑜𝑣 𝐴𝜃𝑠 , 𝐴𝜃𝑞 =

𝑖

𝐴𝜃𝑠(𝑠𝑖) 𝐴𝜃𝑞 𝑞𝑖 −
1

𝑛


𝑖

𝐴𝜃 𝑠𝑖 

𝑖

𝐴𝜃𝑞 𝑞𝑖



CovAD

• Method: Maximize the covariance 𝑐𝑜𝑣 𝐴𝜃𝑠 , 𝐴𝜃𝑞

• Upon convergence, both algorithms 𝐴 𝜃𝑠 and 𝐴 𝜃𝑞 identify features 

that predict anomalies

• This is despite being fed different inputs

• Equivalent to a clustering method that uses covariance to identify

clusters



CovAD: Running on RF Station Faults

• We ran CovAD over the raw RF diagnostics and beam data

• Used two neural networks as the scoring algorithms

• Result: CovAD only labels coincident events as truly anomalous

RF station
diagnostic 

data

𝐴 𝜃𝑠 𝐴 𝜃𝑞

Beam-
based 
data

Covariance 
Loss

Scalar 
output

Scalar 
output



Thank you!

R F  S T A T I O N  F A U L T

I D E N T I F I C A T I O N :  

HTTPS://ARXIV.ORG/ABS/2206.04626

https://arxiv.org/abs/2206.04626


Appendix



Limiting to “good” beam conditions

• We limit our method to time periods when machine is running at “good” 
conditions

1.Beam stopper is inactive (STPR:BSYH:2:STD2_IN_A == 0)

2.Beam rate is 120Hz (IOC:BSY0:MP01:PC_RATE == 8)

3.Beam split is 120 Hz HXR/0 Hz SXR 
(IOC:IN20:EV01:RG02_ACTRATE == 10)

4.Beam is actively logged (BPMS:IN20:221:TMITCUH1H logged at 1Hz)

5.Beam has “good” charge (BPMS:IN20:221:TMITCUH1H > 0.5e9)

6.Beam satisfies the above for at least 5 minutes

• Allow temporary (1 minute) violation of conditions 2-5 (machine will 
automatically respond to “catastrophic” errors; without this condition, 
we filter out many of the worst faults)



Types of Anomalies

• During hand labeling, we found a natural anomaly categorization:

1. Faults: beam is lost

2. Sustained anomalies: initial deviation followed by a recovery period

• Sustained anomalies accounted for ~60% of all anomalies during the 

study period

• Most sustained anomalies were likely missed by operators in real-time

• Short-lived: typically last <10 seconds

• FEL degradation: causes beam degradation, not cause beam loss



Fault



Sustained Anomaly



ResilientVAE: Unsupervised AD with contaminated data

• We have focused on finding anomalies in a particular subsystem(s)

• But LCLS has a lot of failure modes!

• Can we find general anomalies in the LCLS beam data?

• Can we also attribute the anomaly back to particular beam readings?

• The challenge is that the beam data is

• Unlabeled → no supervised methods

• High (>500) dimensional → curse of dimensionality for many 
traditional (distance-based/vector space partitioning) anomaly 
detection algorithms

• Contaminated → no “normal” training set exists for one-class 
classifiers



ResilientVAE

• We propose a variant of a Variational AutoEncoder (VAE)

• 𝑣: cleanliness of full input 

• 𝑧: latent code

• 𝑤𝑑: cleanliness of dth input feature

• 𝑥𝑑: dth input feature

• Neural network is composed of:

• 𝑝𝜃(𝑥|𝑧): encoder

• 𝑞𝜙(𝑧|𝑥): decoder

• 𝜋𝑑 𝑥 : feature cleanliness

• 𝛾 𝑥 : input cleanliness



ResilientVAE: Example Anomaly

RF station fault

Minor beam loss
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