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Uncertainty Quantification
• Deep Learning (DL) models are deterministic transformation 

functions from an input to the output

• DL models are very powerful and expressive

• It is important to know the confidence associated with each 
prediction from a DL models for decision making

Input(s) Output(s)

Uncertainty Types: Aleatoric vs Epistemic uncertainties
• Aleatoric à Data uncertainties
• Epistemic à Out of training distribution uncertainty (OOD)

Aleatoric

Epistemic
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Popular methods for UQ in DL

(a) MC Dropout (b) Ensemble

Q1

Create multiple copies of the 
same model architecture 
trained with different 
parameters initialization. 
Requires calibration after 
training

(c) Quantile Regression

Q2

Q3

Qn

Model is trained to predict 
quantiles for the regression 
problem

Use dropout during 
inference to create 
variability in the prediction 
which can be used to 
estimate the uncertainty. 
Requires offline calibration
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Popular methods for UQ in DL

• Unfortunately, majority UQ methods for DL do not account 
for OOD uncertainty

• This is critical in optimization or control problems

• For example, different methods yield vastly different 
uncertainty estimation

• Deterministic (Prediction value)

• MC Dropout

• Deep Ensemble

• Gaussian Processes (GP)

https://arxiv.org/abs/2006.10108

https://arxiv.org/abs/2006.10108
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GP for UQ in DL

• GP transforms the input space into a higher 
dimensional space with the help of a kernel

• The inferences are based on the distance measure 
between different input samples

• This allows GP to intrinsically provide uncertainty 
estimates including OOD

• GP is limited in terms of Scaling and data reduction 
techniques are usually required for large data sets

• Recent study presented a way to introduce Gaussian 
Process approximation within a neural network

• This allows to use highly expressive deep networks and 
provide uncertainty estimation

Spectral Neural Gaussian Process*

https://arxiv.org/abs/2006.10108

https://arxiv.org/abs/2006.10108
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Errant Beam Prediction for SNS Accelerator

• Spallation Neutron Source (SNS) 
accelerator at ORNL delivers 1.4 
MW of a 1 GeV pulsed beam at 60 
Hz

• Ongoing work to predict errant 
beam pulses as well as equipment 
degradation and prognostics

• Continuous data collection is done 
by Differential Current Monitor 
(DCM), Beam Position Monitor 
(BPM) etc.

• Errant beam prediction on one 
pulse before it occurs to potentially 
avoid it
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Errant Beam Prediction for SNS Accelerator

• Goal: Predict an upcoming machine trip before it occurs to 
potentially allow the crew to change settings to avoid it

• How: We use pulses leading to a trip (tagged "Before") and  
identify features that indicate an upcoming failure

• Data science pipeline used:

Data Source

● Real or synthetic
● Quality
● Dimensionality
● Format
● Density
● Size

Data 
Preparation

● Data cleaning
● Data restructuring
● Correlations
● Dynamics
● Visualization  

ML Approach

● Classification
● Regression
● Clustering
● Feature extraction

Results

● Predictions
● Confidence 

Level
● Explainability

Training 
Tools

● Cross-validation
● HPO
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Data Collection and Preparation

How was the data collected and labeled?

• DCM creates a series of pulses (“macro-pulses”) with each 
macro-pulse composed of ~1k mini-pulses
• An errant-beam data file is composed of 25 “good” 

macro-pulses followed by the errant beam pulse

• A “normal” data file has no errant beam pulse

• We used the macro-pulse before the errant beam pulse (and 
labeled it as anomaly) and macro-pulses from the normal file 
(and labeled them as normal) for our studies

• Our hypothesis: there is a sign about upcoming anomaly in 
macro-pulses even before it happens

• We also need to forecast the fault within a short time window 
to be actionable

• Samples were divided into 3 orthogonal dataset:
• Train (64%)/Test(20%)/Validation(16%)
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Siamese Neural Network (SNN) Model
Traditional classification models vs Siamese model

Rare anomaly

• Traditional DL classification models fails to identify unseen anomalies 
(OOD)

• Similarity based models can correctly classify unseen anomalies. Ex 
Siamese model

• Siamese model does not explicitly model the classification but focuses 
on the similarities

• It learns twin embedding models to transform inputs 
into a latent space

• Distance measures are applied at latent space to 
compute the similarity 
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Data Preparation for SNN Model Training

Reference Normal Pulses

Pulses before Anomalies

Data for the SNN Model

Different Combinations of 
Normal to Normal (labeled 0) 
and Normal to “Before” pulses 
(labeled 1)

1

0

0

1
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Uncertainty aware Siamese model

• We enhanced our Siamese model by adding 
GP layer providing an uncertainty estimate

• Results from similarity model showed a ~4x 
improvement in performance over previously 
published results, it is also much better than a 
vanilla Auto-encoder

• The ROC curves shows true fault detection 
rate above 60% while keeping the false alarms 
below 0.5% (not optimized)

• We introduced an out-of-domain anomaly, 
labelled 1111 (red), the UQ-based model 
performed similar in classifying the anomalies 
and indicated high uncertainty (as expected)
After a fault is predicted, is it possible to 
associate with a particular equipment 
failure?
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Gradient Class Activation Mapping (GradCAM)

• GradCAM provides mapping between the the model output to the features in the input 
that the model thinks are the most relevant

• Extracts the most active features in the last convolutional layer and maps them back to 
the input 

https://arxiv.org/abs/1610.02391
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Equipment Fault Classification using GradCAM

• Applied GradCAM on SNN model trained to predict Errant Beam Pulses

• It identified sections of the waveform most relevant for a particular decision from the model

GradCAM

Stacked Relevance Vectors (“Before” Pulses)
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Equipment Fault Classification using GradCAM
• The salient feature vectors are reduced to 2-dimensional space using UMAP*

• Studying how the cluster location from anomalies relate to specific equipment failures

Normal Pulses

”Before” Pulses

* https://arxiv.org/abs/1802.03426
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File Server

ML GUI

Cloud VM

Docker

Data

Pro
xy Lo

g
g

e
r

MLflow’s browser-based interface

• Streamlined data processing
• Easy model generation and training for non-ML 

experts with an application
• Dockerized parallel training on GPUs (efficient 

training)

• MLflow hosted on Cloud VM for organized  and 
multi-user model tracking

• Scalable with more models, use cases, projects

Sustainable ML for SNS with MLflow

Computing 
Server
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Online system
• Upcoming pulse type 

decision (good or bad) must 
be made between pulses 
(≈15 milliseconds)

• Random Forest on LabVIEW 
FPGA
– Developed by ORNL 

collaborators

• Siamese twin on LabVIEW RT 
DCML and Unix ML Server

• DCML feeds data for 
machine learning training 
and inference while the 
original DCM still protects the 
machine
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DCML live results (Siamese/RF 
upstream/downstream

ML Server Results Control Room Screen

1 Hz60 HzSimilar = 0
Dissimilar = 1

DCML:
• Can run up to 4 

deterministic SNN 
inferences

1 Hz beam (instead of 60 Hz) is 
seen as abnormal

examples

ML Server:
• Can run 20 deterministic 

inferences per pulse at 
60 Hz to compare 
incoming waveform with 
multiple references (can 
be normal or abnormal)

• Create average 
similarity to improve 
results

• Presents results over 
EPICS

Chopper partial failure is seen as 
abnormal beam

Online results
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Path Forward
• Currently deployed deterministic SNN model will be replaced by 

Uncertainty Aware SNN
• Continue the study on equipment fault classification via GradCAM and 

SNN model

• Because SNN focuses on similarity, it is sensitive to changes in the beam 
configuration

• Ongoing work to add beam configuration to the SNN model as 
conditional inputs
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Uncertainty Aware Booster Surrogate 

FNAL Accelerator Complex:

Fermilab Site

Booster ring

Courtesy: Christian Herwig

The Booster receives the 400 
MeV (kinetic energy) beam 
from the Linac

It is then accelerated to 8GeV 
with the help of booster 
cavities and Combined-
function bending and focusing 
electromagnets known as 
gradient magnets.

These magnets are powered 
by the gradient magnet power 
supply (GMPS)

Aim:
Reduce beam losses in the FNAL Booster by developing a Machine Learning (ML) model that provides an 
optimal set of actions for GMPS regulator
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Reinforcement Learning for Booster Control

• Other high-current, high-power electrical loads near GMPS varies in 
time 

• Causing unwanted fluctuations of the actual GMPS electrical 
current and thus fluctuations of the magnetic field in the Booster 
gradient magnets

• This spread in B-field degrades the beam quality

• A GMPS regulator is required to calculate and apply small 
compensating offsets in the GMPS driving signal

• Use of RL to improve the existing PID based 
regulator

• Policy model is focused on controlling the 
regulator to reduce the error

• This invokes a need of Surrogate model to 
build the RL environment 
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Uncertainty Aware DL Regression Model

Why uncertainty quantification is important in Digital Model?
• Uncertainty Quantification can help determine how well a region of a phase space is 

modeled by the surrogate

• Gaussian Process Approximation (DGPA) method to quantify the regression uncertainties for a 
DL model

• Unlike most other methods, DGPA does not require multiple inferences and does not require 
offline calibrations making it easy to deploy in online settings

Arxiv: 
https://arxiv.org/abs/2209.07458

Poster: NeurIPS Physical Science 
Workshop 2022

Paper: Under review at PRAB
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Thank You!
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