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• Muon Collider overview 

• Final Cooling: baseline and challenges 

• Simulation tools and automatic optimization 

• Supervised Learning for Final Cooling optimization: 
- Optimization speed-up 
- Finding approximated solution 
- Identification of most relevant design parameters 
- Classification of initial conditions 

• Further potential ML applications

Outline



I. Muon Collider Overview



Physics potential: 

14 TeV lepton collisions are comparable to 100 TeV proton 
collisions for production of heavy particle pairs  
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• Luminosity per power increases with energy: unique opportunity provided technology for the MC is available 
•  Compact => Expected to be cost effective and reducing power consumption in comparison to other options. 
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Why colliding muons?
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• Previous studies in the US and now: US Snowmass recommended muon collider R&D be considered a high priority  
• Experimental programme in UK, alternatives studies by INFN 
• 3 TeV collider as the first exploration stage possible with technology accessible in 10-20 years

➡ unique promising option to reach highest lepton energies with high luminosity 
➡ Roadmap process found muon collider challenging but did not identify any showstopper 

• Collaboration across large number on universities and laboratories  
- Web site: https://muoncollider.web.cern.ch 

• First Muon Collider Collaboration Meeting (October 11-14, 2022)

Muon collider is included into European Accelerator R&D Roadmap 

✓EU Design Study proposal has been successfully accepted in 2022 
➡ provide a baseline concept of a muon collider 
➡ Estimate performance and associated key challenges, cost and power consumption drivers 
➡ Identify R&D path to demonstrate the feasibility 

Muon Collider Collaboration

https://muoncollider.web.cern.ch
https://muoncollider.web.cern.ch
https://muoncollider.web.cern.ch
https://indico.cern.ch/event/1175126/
https://arxiv.org/abs/2201.07895


Short intense 
proton bunch 
sent on the 
target

Interaction with the target 
produces pions 
➡ decay into muons

Muons are captured 
and cooled to lower 
emittance

Acceleration to high 
collision energy

Muon Collider Overview



Would be easier if muons did not decay with 
lifetime = 2.2  …μs

Muons are created as pions decay products and form a beam with a huge emittance 
Cooling (the reduction of occupied phase-space by muons) is required 

Traditional cooling techniques are not suitable due to muons lifetime 
Ionisation cooling: fast novel technique, principle is demonstrated by MICE collaboration

Muon Collider Overview

https://www.nature.com/articles/s41586-020-1958-9


 

  
Lowering transverse emittance on the costs of : 
➡ Longitudinal emittance growth 
➡ Bunch length increasing: challenging RF set-up  
➡ Energy spread (needs to be kept within the accelerator acceptance) 
➡ Number of survived particles (length of the channel vs. muon lifetime)

Energy loss 
term

Multiple 
scattering term

• Energy loss due to the interaction with absorber material 
• Reduction of transverse beam emittance  
• Re-accelerating the beam to restore the longitudinal momentum

B. Stechauner

Technology and challenges of Final Cooling



II. Final Cooling Channel:  
optimization and surrogate models



Simulation tools for ionisation  cooling 
• ICOOL: developed for 3D tracking of particles in 

ionisation cooling channels 
Problems: 

• ModificaJon of text file-like input decks 
• EvaluaJon of tracking results

• Python “wrapper” for launching ICOOL 
• Automatic computation of initial beam distribution,  

generation of ICOOL code 
✓ Additional analysis in Python 
✓ Storing input and output of simulation in a 

structured format (JSON) 

Extending simulation framework

✓ Simplified optimization set-up 

✓ Easily extendable 

✓ Easy integration of optimization methods 

✓ Enables to use the simulations as training dataset



First attempt: simplified lattice, optics matching

Applied optimizations methods:  
▪ Nelder-Mead 
▪ Differential Evolution: stochastic population-based method, allows parallelization 
▪ Extremum Seeking:  

A. Scheinker and D. Scheinker, “Constrained extremum seeking stabilization of systems not affine in control,”  
International Journal of Robust and Nonlinear Control 28, 568–581 (2018)

✦ Efficient transverse emi@ance reducAon: beam saJsfying opAcal constraints 𝛼 = 0, 𝛽 = 2𝑝/𝑞𝐵  
✦ ObjecJve funcJon: minimize                                        
✦ Free parameters: radii of solenoid coils, maximum field

Simplified la+ce: 2 cooling cells, peak B(z) = 30 T  



Optimizing magnet 
field using ES

✓ Eliminating emittance blow up 
due to unmatched optics. 

✓ Transverse cooling using liquid 
hydrogen absorber in the centre 
of optimised solenoid field

Placing absorber in 
optimised solenoid field

✦ ObjecJve funcJon: minimize                                         , with 𝛽 = 2𝑝/𝑞𝐵 

First attempt: simplified lattice, optics matching



Strategy for optimization speed-up:          
1. Train a surrogate model 

Using input-output pairs collected from tracking simulations during ES- optimization 
2. Continue optimization, but skip tracking in evaluation step: replace with ML model prediction 

Training models to predict simulation output

• E. Fol „Evaluation of Machine Learning Methods for 
LHC Optics Measurements and Corrections 
Software“, CERN-THESIS-2017-336, 2017

• A. Edelen et al. „Machine learning for orders of magnitude 
speedup in multiobjective optimization of particle accelerator 
systems“ ,Phys. Rev. Accel. Beams 23, 044601, 2020



Decision Trees: 
• ParJJon data based on a sequence of thresholds 
• ConJnuous target y, in region esJmate: 
• Mean Square Error

Random Forest: 

•  Random subset of examples, train separate model on 
each subset 

•  Only random subset of features is used at each split 
•  Increases variance, tend not to overfit 

Training models to predict simulation output



✓ Random Forest regressor, 1200 simulations 
✓ 98.3% accuracy on a test set (300 simulations)

✓ Compute optimization function from ML-model prediction 
✓ Optimization in a few minutes instead of ~1.5 hours for 

200 steps using ICOOL tracking simulations

Predicting beam properties included in objective function:

Training models to predict simulation output



II. Inverse Models towards 
 complete Final Cooling design



General Idea

Possible strategies 
Push transverse emittance minimization 
- assuming fixed initial beam parameters coming from previous muon production stage 
“Backwards” optimization 
- starting from the downstream requirements (final emittance, beam energy, etc.)  

• Muon Collider design: increase luminosity and overall efficiency  
=> Final Cooling needs to be optimised as integrated part of the entire complex 
=> Continuously integration of changing requirements and constraints 
=> flexible optimization strategy is needed



General Idea

Possible strategies 
Push transverse emittance minimization 
- assuming fixed initial beam parameters coming from previous muon production stage 
“Backwards” optimization 
- starting from the downstream requirements (final emittance, beam energy, etc.)  

• Muon Collider design: increase luminosity and overall efficiency  
=> Final Cooling needs to be optimised as integrated part of the entire complex 
=> Continuously integration of changing requirements and constraints 
=> flexible optimization strategy is needed

• Combined dataset to train a simplified 
model including parameters of interest 

• Starting point providing fast estimates



Full cooling cell optimization: absorbers and RF
RF-Track (developed by A. Latina):  
• User interfaces in Python and Octave 
• Possibility to include collective effects 
• Parallelisation, fast executable 
• Used for tuning of full cell structure, including RF 
• Available at: https://gitlab.cern.ch/rf-track/download

I.Linear optics matching
II. Minimize transverse 
emittance using absorber

III. Optimise towards target values for 
transverse and longitudinal emittance, 
include re-acceleration

- Energy loss and re-acceleration: 
What are optimal beam energies 
at the end of each cell? 

- Trade-off between transverse 
cooling and longitudinal 
emittance increase?

https://gitlab.cern.ch/rf-track/download


• First “stage”: 4 cooling cells 
• Free parameter:  at the start of the channel, 

 absorber length, drift length, number of RF cavities,  RF frequency, voltage, phase in each cell (24 in total) 
• Target parameters of cell n = initial parameters of cell n+1:  

 Desired beam parameters: transverse emittance: 230 mm mrad, longitudinal emittance < 10 mm, pz = 110 MeV/c  
 (based on previous design) 

Pz, ϵ⊥, ϵ∥, σz

Global optimization of cooling performance

Pz, ϵ⊥, ϵ∥, σz

Proof of concept: optimising cells “backwards” starting from final target values

“High field – low energy muon ionization cooling channel”, H. Sayed, Robert B. Palmer, D. Neuffer 
 Phys. Rev. ST Accel. Beams 18, 091001 – Published 4 September 2015



• First “stage”: 4 cooling cells 
• Free parameter:  at the start of the channel, 

 absorber length, drift length, number of RF cavities,  RF frequency, voltage, phase in each cell (24 in total) 
• Target parameters of cell n = initial parameters of cell n+1:  

 Desired beam parameters: transverse emittance: 230 mm mrad, longitudinal emittance < 10 mm, pz = 110 MeV/c  
 (based on previous design) 

Pz, ϵ⊥, ϵ∥, σz

Global optimization of cooling performance

Pz, ϵ⊥, ϵ∥, σz

Proof of concept: optimising cells “backwards” starting from final target values

• Optimization propagating requirement from the end of the channel, individually for every cell:  
=> Tracking: generates a new gaussian beam for every cell,  however correlations are expected to develop  
throughout the channel! 

• How to obtain (nearly) optimal parameter without tracking simulations? 

Limitations of traditional tracking

“High field – low energy muon ionization cooling channel”, H. Sayed, Robert B. Palmer, D. Neuffer 
 Phys. Rev. ST Accel. Beams 18, 091001 – Published 4 September 2015



1.Train a model on simulations (saved from optimization runs or simple parameter scans) 

2.Predict parameters for several consecutive cells starting from final target values. 

3.Tracking using initial beam predicted for the 1st  cell and parameters of each cell.

ML - assisted Optimization

  at the 
start of each cell + 
cell parameter 

Pz, ϵ⊥, ϵ∥, σz 
 after final cell 
Pz, ϵ⊥, ϵ∥, σz

Result is as required? Further optimization needed?

Use as initial guess for optimisation algorithm 
-> optimal solution is found within fewer stepsFast design estimate



First results: beam evolution in optimised cooling cells

Beam parameters (end of the cell)

Emittance Tr. 
[mm mrad]

Emittance 
Long. [mm]

Bunch 
length 
[mm]

Pz [MeV/c] Pz 
spread

300.0 1.5 50.0 135 3.5

295 1.8 72 123 3.6

285 2.4 92 112 3.7

274 9.3 260 104 6.5

260 16.5 715 93 7.1

Beam parameters (end of the cell)

Emittance Tr. 
[mm mrad]

Emittance 
Long. [mm]

Bunch 
length 
[mm]

Pz [MeV/c] Pz 
spread

300.0 1.5 50.0 135 3.5

295 1.7 79 125 3.6

283 2.2 61 118 4.6

270 2.3 128 105 2.4

255 4.8 210 95 4.1

Differential Evolution Algorithm Beam Tracking with predicted parameters  
from Random Forest model

• Target: transverse emittance: 230 mm mrad, longitudinal emittance < 10 mm, pz = 110 MeV/c 
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First results: beam evolution in optimised cooling cells

Note: numbers are preliminary, ionisation 
cooling in RF-Track is still under development

Beam parameters (end of the cell)

Emittance Tr. 
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Emittance 
Long. [mm]
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length 
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spread
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283 2.2 61 118 4.6

270 2.3 128 105 2.4
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Differential Evolution Algorithm Beam Tracking with predicted parameters  
from Random Forest model

• Target: transverse emittance: 230 mm mrad, longitudinal emittance < 10 mm, pz = 110 MeV/c 
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Note: the model achieved only 80% accuracy on 
a test set, improvements are still possible

✓ Better trade-off between longitudinal and transverse emittance 
✓ Demonstrated proposed optimization strategy 
✓ Flexible automatic optimization framework  



III. Identifying most relevant parameters



Feature importance analysis

Comes for free when building surrogate models using Random Forest algorithm  

• Prediction loss with/without permutation of each variable: 

• Decrease in the model score is indicative of how much the model depends on the feature:  
how important this feature is for a particular model?  
https://scikit-learn.org/stable/modules/permutation_importance

Important consideraJons: 
- First, make sure that model’s scores are sufficiently high (e.g. through cross-valida]on):  

features demonstra]ng low importance for a bad model could be very important for a good model. 
- Correlated features: one of the features is permuted 

๏ the model s]ll has access to the feature through its correlated feature  
๏ lower importance for both features, where they might actually be important. 



Does the model “understand” the physics behind training data?

… obvious to an (experienced) physicist 
—> Big achievement for a decision tree 
✓ “what is this model actually learning?”

Helpful for complex models: 
- what are most critical parameters to be optimised? 
- Where are the bottle necks?

Simple model  
- energy loss in absorber and optics matching 
- 2 cooling cells, only B-field and absorbers 
- Varying initial beam energy, solenoid coils and absorber density

Predicting Transverse emittance reduction



Further potential ML applications  
in Muon Collider Design



Sample-efficient optimization: limiting initial conditions
• Optimization of last cooling cells becomes more challenging:  

- lower energies, longer bunches, more energy spread 
• Certain combinations of initial beam conditions and cell parameters can lead to tracking failure  

Classify a few simulation set-ups based on tracking results 
Find a stable conditions boundary  
Run optimization exploring parameter space within this boundary



Sample-efficient optimization: limiting initial conditions
• Optimization of last cooling cells becomes more challenging:  

- lower energies, longer bunches, more energy spread 
• Certain combinations of initial beam conditions and cell parameters can lead to tracking failure  

Classify a few simulation set-ups based on tracking results 
Find a stable conditions boundary  
Run optimization exploring parameter space within this boundary

Example of applying this ML-approach to DA optimization in HL-LHC:



Sample-efficient optimization: limiting initial conditions
• Optimization of last cooling cells becomes more challenging:  

- lower energies, longer bunches, more energy spread 
• Certain combinations of initial beam conditions and cell parameters can lead to tracking failure  

Classify a few simulation set-ups based on tracking results 
Find a stable conditions boundary  
Run optimization exploring parameter space within this boundary

Example of applying this ML-approach to DA optimization in HL-LHC:

Dynamics Aperture (DA) needs to be estimated in numerical simulations: 
- Excludes disconnected stable islands from the calculation of the volume 
- Very computationally expensive to sample the phase-space with 6D scans 
Solution: estimate the border of stable phase-space region with supervised learning 



Sample-efficient optimization: limiting initial conditions

• Support-Vector machine algorithm,  
binary classification 

• Linear classifier, learning non-linear decision function 
using kernel-transformation 
 (here: Radial Basis function) 

• Training data: label particles into  
survived N turns/ not survived 

• Learn the decision boundary  
=> adaptively sample the phase-space 
Fewer simulations to find valid phase space 
parameters

F.F. Van der Veken, et al., 
“Determina4on of the Phase-Space 
stability border with ML”, IPAC’22 

ML-approach to Dynamic Aperture optimization in HL-LHC:

https://accelconf.web.cern.ch//ipac2022/papers/mopost047.pdf


Beyond final cooling optimization
• Ionisation cooling simulation: 

- Limited fidelity due to the lack of experimental data 
- MICE experiment: comparison between experimental data and Geant4 simulations 

➡ Combining simulations and experimental data to build high-fidelity models? 

• Integrated model of muon collider complex: 
- Optimization routines is a typical instrument across different collider sub-systems 
- Systematically saving the data 

➡ Collecting data from otherwise non-compatible simulations tools  

✓  Opens several opportunities: identification of most critical parameters for collider performance  
(e.g. feature importance analysis, but also dimensionality reduction techniques) 

✓ Fast-executable model for changing requirements as design evolves 



Conclusions



Conclusions

• Early stages of design study: a lot of progress has been made 
 (First Muon Collider Collaboration Meeting (October 11-14, 2022)) 
- rapid changing requirements 
- integration of different system components 

• How can ML help? 
- Focus on simulation studies: speed-up, sample-efficiency 
- Numerical data-driven models: fast estimates adapting to new requirements  

• First steps of integrating ML tools into final cooling design 
- Possibility to speed-up optimization 
- Benefit from data collected during optimization: Surrogate models providing fast estimates 

• Optimization frameworks progressing together with the design study: new ideas are welcome! 
 

https://indico.cern.ch/event/1175126/


Thanks a lot for your  
attention!
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• Constant current for required luminosity scaling 
• Emittance preservation 
• Advance lattice design 
• High field magnets 

Current focus of the study:  
Design of muon collider to satisfy the target performance 

=> Final Cooling: Integration and optimisation of overall cooling design

Muon Cooling: required emittances
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High field – low energy muon ionization cooling channel 
Hisham Kamal Sayed, Robert B. Palmer, and David Neuffer 
Phys. Rev. ST Accel. Beams 18, 091001 – Published 4 September 2015

Final Cooling baseline
• A Gaussian beam with ε┴=300 μm and ε║ = 1.5mm 

• Beam momentum is reduced initially to 135 MeV/c  
• High-field magnets 25—32 T, beam momenta ranged from 135 MeV/c to 70 MeV/c

•  Achieved in previous studies: ε┴ = 55 μm,  with ε║ = 70 mm, transmission of 50% 

• Preferred  ε┴ = 25μm  

• should be possible to achieve with stronger focusing fields, alternative absorber configuration 
• Challenge: trade off optimising longitudinal momentum, emittance and energy spread for efficient transverse emittance reduction 


