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Which accelerator is running autonomously? ()

NI

No accelerator at CERN is autonomous yet.
The most autonomous ones: LINACs, LEIR

The CERN accelerator complex
Complexe des accélérateurs du CERN
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Setting the scene
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Automation has long tradition at CERN'’s accelerators

* specially enforced by collider operation SppS, LEP, LHC,... potentially because of size

Despite of working as chain of accelerators — degree of
automation very different for different accelerators

— eventual "full” automation is however only possible if all machines play
along

* e.g. energy drifts in one machine will impact next machine

n — automation will become
one of the accelerator complex goals “Never let a good crisis

go to waste”
* faster commissioning, faster mode switching,
more physics in less time

effort instead of individual effort
In a corner




The waves of automation @ CERN ()

NS

The LHC is driven by executing sequencer tasks on demand.

All other machines keep automatically playing the programmed
supercycle over and over again.

@ Driven by CERN timing system and multiplexing of settings on equipment
frontends

5PS-PAGEL1 Current use...LHCMD?2 2. 76E+09 06-09-22 10:30:15
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The waves of automation @ CERN ™))
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The current automation efforts are based on three threads

® Automation wave 1 (2006 -)

*

*

reduce complexity through models (LSA)

high level parameter control, sequencers, software interlock system, classic control
algorithms in feedforward and feedback (SVD, COSE,...)

(2018 -)

— provide clever solutions if models not available. E.g. Learn them...

% Python into the control room

* Optimisers, ML,... on demand

* X ¥ X

(2021 -)
— close the loop
frameworks (Generic Optimisation Framework (GeOFF), Machine Learning Platform)
auto-launch correction, auto-resets, auto-analysis

— auto-pilots



The waves of automation @ CERN

The current automation efforts are based on three threads

® Automation wave 1 (2006 -)

*

*

reduce complexity through models (LSA)

high level parameter control, sequencers, software interlock system, classic control
algorithms in feedforward and feedback (SVD, COSE,...)

(2018 -)

— provide clever solutions if models not available. E.g. Learn them...

% Python into the control room

* Optimisers, ML,... on demand

* X ¥ X

— all building blocks
available for autonomous
(2021 -) accelerators

— close the loop
frameworks (Generic Optimisation Framework (GeOFF), Machine Learning Platform)
auto-launch correction, auto-resets, auto-analysis

— auto-pilots
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Automation: What should we aim for?

Consider different automation goals for different operational
scenarios
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% Standard Physics operation

% Commissioning, recovery from stops,™. "
recovery from major breakdowns

% Machine development, special beams /
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Should we automate everything? (*)

Input from Automation mini workshop (30/9/2022) at CERN

— Autonomous (self-driving) accelerators are entirely possible for
“routine operation” @ CERN

— Do not focus on exotic and exceptional running modes (yet)

Law of diminishing marginal returns

* Recovery from events that latch

interlocks the more automated a process is, the less

“return value” by adding more automation.
Focus on the next problem

* Patrols (a recovery procedure)

A. Calia on automation

» Special beam requirements, new
: ; of the LHC

cycles with special settings, ..MD

Patrol Box

R. Alemany on the LEIR auto-pilot
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What should we aim for? @)
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@ Standard physics operation —» max quality, stability
* Aim for 100 % automation

— min turn-around
% automatic resets/notifications — J

< automatic timing sequence management + beam requests

% contain drifts

* Set of “standard" monitoring for all beams/cycles

® Commissioning, recovery from stops, recovery from major
breakdowns

® Machine development, special beams
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What should we aim for? @)
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@ Standard physics operation

® Commissioning, recovery from stops, recovery from major
breakdowns

% Aim for automating all distributed system tests and repetitive tests, scans, parameter
optimisation

< Bach testing (e.g. acc-testing), optimisers, RL, model-based control,...

* Make complicated measurements simple, repeatable, non-artisanall

* Reduce commissioning time by 50 %

@ Machine development, special beams

— speed up
— guaranteed quality (e.qg.

Sptlmlsatlon for many DoF) |
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What should we aim for? @)
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@ Standard physics operation

® Commissioning, recovery from stops, recovery from major
breakdowns

W: [ ] oo

— more flexibility

® Machine development, special beams :
— less setup time

* Aim for partial automation (inherited from above) L J

* Attention on efficient preparation of “new” cycles: synergy with automation for
commissioning;



_Standard physics operation - tasks

100 % automation?
— Have solutions or PoC for (almost) all aspects.

@ Adapting timing sequence for different cycles to be played (e.g. LHC)

@ Containing drifts

CER/W
\

NS

* injection oscillations, orbit, injection phase, energy matching, steering to targets, MTE

efficiency, stripper foil degradation, n X 50 Hz content in slow extracted spill, RF
splitting for LHC beams, ....

@ Dealing with effects of hysteresis after dynamic economy or supercycle
changes

® Dealing with effects of stray fields

® Dealing with intensity dependent effects and settings

* tunes, damper, pickup saturation,...

@ Dealing with equipment trips or states for certain beam conditions

@ Launch/set up on-demand measurements of certain beam characteristics

(e.g. wirescans)



Two game changers
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Future improvements in particle accelerator performance are predicated on increasingly accurate online

modeling of accelerators. Hy

effects in

and material components of

accelerators are often neglected in online accelerator models used to inform control algorithms, even
though reproducibility errors from systems exhibiting hysteresis are not negligible in high precision
accelerators. In this Letter, we combine the classical Preisach model of hysteresis with machine learning
techniques to efficiently create nonparametric, high-fidelity models of arbitrary systems exhibiting
hysteresis. We experimentally demonstrate how these methods can be used in sifu, where a hysteresis
model of an accelerator magnet is combined with a Bayesian statistical model of the beam response,
allowing characterization of magnetic hysteresis solely from beam-based measurements. Finally, we
explore how using these joint hysteresis-Bayesian statistical models allows us to overcome optimization
performance limitations that arise when hysteresis effects are ignored.




Kill n birds with one stone... (n>3)

— Controll hysteresis and eddy currents

PoC for the entire
control
stack:

PhD between
Data Sience section
& magnet group

Also including
sextupoles
and octupoles

Start date 1/1/2023

BE-CSS PhD Project Proposal Contacts: Verena Kain, Chris Roderick

High precision prediction and control of magnetic fields in synchrotrons

Introduction —motivation

Magnetic hysteresis, eddy currents, and imperfections during magnet manufacturing severely limit classical
parameter modelling and settings generation to control today's multi-cycling accelerators. In particular, the
dependence of the magnetic field on the cycling history cannot be addressed with our current control room
tools and concepts. Various workarounds, such as pre-cycling or magnetic pre-functions, have been
implemented to overcome these limitations - all of them are time-consuming, limit flexibility and are not
generally applicable.

Main goal

The mgain goal is to leverage recent advances in computational techniques and machine learning (ML) to
model and predict hysteric behaviour based on measurement data. In turn, computation of magnetic cycles
can be made and applied in real-time, as supercycles are created, adjusting the magnet electrical supply to
compensate for the hysteresis and other non-linearities of the equipment.

Potential benefits

e Improve the field reproducibility of accelerator magnets due to decoupling and modularising operation,
improving overall beam performance.

e Increase accelerator physics time by eliminating the magnetic pre-functions employed at present.

e Establish a methodology for training ML magnetic field models and applying the results to accelerator
operations.

e Gain understanding of how to decouple additional contributors (such as the power converter ripple and
overshoot) in the best manner.

e Optimize for energy saving.

CE/RW
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Other Ingredients O
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@ For high energy/intensity machines: comprehensive independent interlock
system

® Automatic interlock analysis and fault finding for all machines

@ All equipment state monitored according to beam type and accelerator
mode

% Auto-pilots

* standardised auto-reset

< configuration, capture to logbook, define reset strategy (e.g. inform expert after 3
attempts)

* automatic diagnostics and analysis

< instruments measure every cycle for all beams

< analyse: denoising, computer vision, anomaly detection, forecasting,...
* controllers on top of continuous diagnostics

<% — GeOFF on servers: RL, ES, numerical optimisers



Example - LEIR auto-pilot 1}
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LEIR auto-pilot in the making
® monitors all equipment; recovery actions

® performance supervision: plan to launch correction algorithms, GeOFF;

LEIR DASHBOARD
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R. Alemany @ mini workshop on Automation
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Examples: Containing drifts using GeOFF (™
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Containing n X 50 Hz ripple in SPS slow extracted spill

Tracks n X 50 Hz amplitudes and stabilises:

either with ES or
automatically triggering BOBYQA
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Examples: Contjjging drifts with ML_, WancLRL @

RL agent to correct RF phase and voltage to produce uniform RF
splitting in PS for LHC beams

% Trained in simulation and successfully transferred to control room
% RL algorithm: Soft Actor-Critic (SAC); multi-agent algorithm using CNN to define initial

set point

Phase path: actions taken { Phase optimisation

NOTE: | ™
First -
step
no

action |-
taken.

Phase
loss
during
steps

Voltage path:
actions taken

Final parameters after phase
v\ opt. : tomo/profile/relative
bunch lengths/intensities

Voltage optimisation

.....

Volt
loss
during
steps

Final parameters after volt
opt. : tomo/profile/relative
bunch lengths/intensities

Time bin

20

40

60

80

100

120

0 100 200 0 100 200

Frequency bin Frequency bin

.

Other example: control ramping and debunching cavity in LINACS3 for optimal
injection efficiency into LEIR, based on Schottky spectrum



Containing drifts in a wider sense

Optimising uptime - predictive maintenance
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® Example: classify dump kicker failures from the beam dump pattern images:

SPS and LHC

® VAE model trained on simulations and applied on real data

@ Extract physical information about the system from images through latent

space
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Logging system on hadoop cluster to be further exploited for

prognostics
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Ingredients: Commissioning O
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% Automatic batch testing: with and without beam

% Optimisers/RL/model-based control for setting up

% Consolidate beam instrumentation* — e.g. FIFO for BPMs

* might need big investment in R&D, material,...

% Simplifications of measurements and correction by using
models and ML

x Example: chromaticity measurement based on trimming parameter L and denoising

algorithm for tune measurement P

Bt B




Examples: efficient commissioning (")
Numerical optimisation and ML used for many setting up tasks:

Alignment with beam for LHC collimators, electro-static septum
(ZS) in the SPS, bent crystal for shadowing (ZS):

10 . Beam 1 Run1 ¢ 2011: Semi-Automatic Alignment

B Beam?2 e 2021:12 Hz BLM data available
Run 1

Run 2 Run 2 « 2015: BPMs introduced

20.5 hours
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x10 12.5
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6 I £
- | ‘
211 {1 1
g S| 2 | A ) gLl ey [
O Ly bl " Al l

e 2016: 100 Hz BLM data available

BLM Losses (Gy/s)

o N B OO @

e 2018: Fully-automatic alignment

Machine Learning

=
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. . . . . f —0.0015 I —0.0015
loss reduction, transmission optimisation,... « oiwe w4 o
a3 1 |1-0.0060 asf | [|-o0080
3 i —o.oo75§ & -0.0075:
ey S % i i -0.
> 20 problems across the complex | [[owon® <) -~ i
41 N AT —0:0120 4L i ‘i\‘f‘/:' e =0.0120
TN N\ G515 . il I | -o013s
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Examples: efficient commissioning

Learning models

Example: Modelling “Pole Face Windings" control PS

@ Control for AQ), , and AQ,  available from polynomial fits

@ From data learn neural network F* for “generation" of current

functions for desired Qh,v and O, , for given B function

Defocusing Focusing
<
— N —

> > - - w

> > » .
narrow defocusing L j (s .- )j wide focusing PFW
PFW | - i E_ I
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.
figure-of-eight loop
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R. Alemany at the mini-workshop on Automation: “Give us time..."

Is a fully automatically running
accelerator COMPLEX possible?




_When?

— give us priority and we do it faster

@ Data science section in Beams Department

® Energy crisis

@ Efficiency think tank

LHC

INJECTORS

@ use LS3 to consolidate and reach out to experimental facilities, ISOLDE, AD/
ELENA

2021 2022 2023 2024 2025 2026 2027 2028 2029
) 8 A J[FMAM 3 AISIOND] ) [FMAM ) [A'SOND ) FMAM 33 [A 8 ) 8 J[FMAM)]) 03[ FIMAM[JASOND)
Run 3 LS3



What's needed? o)
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Intermediate milestones (preliminary):

® LEIR auto-pilot consolidate in 2023 and lish wh neralised for
other machines

* includes GeOFF on servers (UCAP)
® Make sure every equipment state is monitored by end of 2023
* auto-resets by end of 2024

@ Quality monitoring and control - decide how by end of 2023

% Examples: YASP-like auto-pilots for injection oscillations all machines, energy error,
Injection phase

@ Batch testing: first examples after next winter stop

* Define common strategy during 2023
@ Simplify and automate complicated measurements in 2023
® Firstideas of hysteresis compensation tech stack 2023

* guinea pig: MBs and MQs in the SPS

® By end of winter stop 2024: sequencer for preparing for access, mode
changes, hardware commissioning tests
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Conclusion o)
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Efficient accelerator operation one of new key themes at CERN

* energy and resource efficient

* efficient and flexible operation

Data Science section in the Beams department for Al/ML solutions for
efficient beam operation

“Efficiency Think Tank” was put in place to define priorities by end of Q1
2023

* Need to define priorities, timeline and quantify potential benefit

(More) autonomous accelerator operation has already been identified as
clear priority

* Standard physics operation should become 100 % autonomous

% Commissioning time reduced by 50 %

CERN controls infrastructure and frameworks are (almost all) mature enough
to implement autonomous accelerator operation



