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Parameter PETRAIII
Energy /GeV 6
Circumference /m 2304
Emittance (hor. / vert.) /nm 1.3 / 0.012
Total current / mA 100

Each year, more than
2000 users are
performing
measurements at the
PETRA Il beamlines.

e High brilliance 3rd Generation
Synchrotron Radiation Source.

e Extremely low emittances.

e 25 beamlines.

e Hybrid lattice with FODO and DBA
(Double Bend Achromat) cells.
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® New high-resolution 3D X-
ray microscope for chemical
and physical processes.

e Construction within the
existing PETRA ring tunnel.

e Nanometre scale for the
first time.

e Ultra low emittances in the
region of 10 pm.

e Each of the eight arcs is
composed of nine hybrid six-
bend achromat (H6BA) cells.
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Layout of the PETRA IV facility and the H6BA cell.
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Parameter HEBA
Tunes vy, v, 135.8, 86.27
Natural chromaticity ¢y, ¢, -233, -156
Momentum compaction «a, 3.310°
U, /MeV 100
Standard ID section /m 4.7-4.9
Hor. Emittance w/o IDs (zero 20
current) /pm
Hor. Emittance with IDs 20
(zero current) /pm
Rel. energy spread with IDs 09103
(zero current)
Beta at ID /m By =2.2
py =22
RF Woltage 1%, 3"4/MV 8,2.4
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The storage ring feeds
up to 30 undulator
insertions (photon
beam can be further
split to allow more
experimental stations).
The storage ring will
operate in two modes:
brightness mode with
1920 stored bunches
with the total current
of 200 mA and the
timing mode with 80
bunches and total
current of 80 mA.



Insertion Devices

Synchrotron sources provide especially brilliant light that can be used to examine a vast
variety of probes and samples. To produce this radiation, insertion devices are deployed.

An insertion device is a special magnetic apparatus with periodic magnetic field designed
to make the electron trajectory wiggle and generate intense synchrotron radiation.
So-called ,,Undulators” or ,Wigglers” are often ,inserted” in straight sections of storage
rings = ID.

ID consist of periodic arrangements
of dipole magnets generating an
alternating static magnetic field
which deflects the electron beam
sinusoidally.

In terms of beam dynamics, an
insertion device should be
“transparent” to the machine. But
there are effects due to field errors
of the ID.



The field integrals determine the overall effect of the
undulator on the electron beam orbit.
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IDs induce an orbit distortion which varies with the gap size

* The magnetic fields of IDs introduce perturbations
to the circulating electron beam and hence affect
the linear and nonlinear beam dynamics of the
electron beam in the storage ring.

e Often users adjust the spectrum from undulators
by changing undulator gap size. It’s important to
keep the orbit constant during these field changes

to not disrupt other users.

Small closed orbit distortions but very sensitive
experiments required sub-prad corrections
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IDs affect the beam dynamics of the stored electron beam
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The data was filtered to represent only user operations (while the Fast Orbit Feedback system is on).
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The IDs have different maximum and minimum gap sizes.



w
<l

©0.0101

IDs affect the beam dynamics of the stored electron beam. The intensity of the effect

depend on the ID gap.

Impact on emittance, projections for PETRA IV.
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Closed orbit distortion measurements
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Building the NN

* The NN takes as input a vector containing the ID gap sizes and gives as output

the predicted orbit at the location of each BPM.

* The different model are trained on 80% of the measurements took in July and

validated vs the remaining 20%
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Input Layer:
ID gaps number of
(18) neurons in each layer

Hyperparmeter sweeps performed with

Weights
& Biases

7 XXX

ISR
BRSSO
N AR

Keras

«‘@\ Closed
KX .
0% Orbit

Output Layer:
Closed Orbit
(2x239=Number of BPMs)

Why using machine learning on this specific problem?

Because of its flexibility and ability to model also highly
nonlinear processes. Measurements for feed forward
systems are time consuming and need to be updated
regularly.
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From prediction to correction:

Random configuration of ID gaps.

Once the orbit is predicted, the strengths of the correctors are
computed through SVD.
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Shallow feed-forward fully connected NN

One hidden layer: exploring the impact of different activation functions and batch size.

activation batch_size hidden_layer_size val_loss loss
tanh 130 550
450
softmax
400 /
350 r
sigmoid
300 ’
[
selu 500
0 .
Hidden -
relu 100 layer b
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Shallow feed-forward fully connected NN

One hidden layer: exploring the impact of different activation functions and batch size.
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Deep feed-forward fully connected NN

Multiple hidden layers: exploring the impact of dropout, batch and layer size and learning rate.

activation batch_size dropout hidden_laye... learning_rate val_loss loss

tanh 260 ——020 . _ 0.115

relu 60 0-66° 100 0.00010 0.060 0.080

14
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Deep feed-forward fully connected NN

Multiple hidden layers: exploring the impact of dropout, batch and layer size and learning rate.
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Recurrent NN

In a RNN the information cycles through a loop. When it makes a decision, it considers
the current input and also what it has learned from the inputs it received previously.

batch_size hidden_layer_size learning_rate val_loss loss

130 550 306565 _ 0.105

125

120 ' 0.100

115

110 ' 0.095

105 0.00035

100
95 0.00030
90
85 0.00025
80
75
70
65
60
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Recurrent NN

In a RNN the information cycles through a loop. When it makes a decision, it considers
the current input and also what it has learned from the inputs it received previously.
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A convolution layer systematically apply learned filters to input in order to extract features.

1D Convolutional NN

The kernel is a matrix (in this case 1D) of weights which are multiplied with the input to extract
relevant features.

batch_size

65

60

55

50

45

40

35

filters

65

hidden_layer_size

260

kernel_size

60

55

50

45

40

35

30

30

val_loss

loss

18



xmm]

1D Convolutional NN
A convolution layer systematically apply learned filters to input in order to extract features.

The kernel is a matrix (in this case 1D) of weights which are multiplied with the input to extract
relevant features.

batch_size filters hidden_layer_size kernel_size val_loss loss
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Comparing the architectures
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The convolutionl and
recurrent structure
outperform the fully
connected NN in a
reasonable amount of
epochs.
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Summary and conclusions ‘%

* The varying gap size of the IDs impact the circulating beam dynamics.
One major effect is orbit distortions that need to be compensated.

* Neural networks were trained on PETRA |Il measurements to learn
the correlation between arbitrary ID configurations and the orbit.

 Different NN architecture models were tested and compared. The
Recurrent and Convolutional NN structure showed better predictivity.

* The prediction can be used to calculate the corrector magnet
strength.

* The same scheme could be applied to PETRA IV considering as well
the expected significant impact on the emittance.
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Contact

Bianca Veglia
DESY. Deutsches g
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