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APS

APS is undergoing a major upgrade (APS-U)

– New storage ring

– Refurbishment of injector complex

– More beamlines

Shutdown April 2023, user operation April 2024

– Only 3 months of 24x7 beam commissioning

New opportunities and new challenges

– More challenging physics

– New diagnostics and increased data rates

– A chance to demonstrate ML tools at a critical moment
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Several simultaneous efforts underway

ML @ APS
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▪ Data logging and analytics

▪ Anomaly detection/prediction (I. Lobach)

▪ Adaptive optimization

OUTLINE
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What kind of data does accelerator produce?

Time series of various types

How is data stored?

Read from control system into specialized tools 

▪ APS – monthly compressed per-PV files (sddslogger)

▪ Many other labs – yearly compressed per-PV files (Archiver Appliance)

▪ Custom high speed loggers

APS DATA ANALYTICS
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L3:B1.XPOS = 0.25

Device



How much data is there?

So far, not ‘too much’, but growing A LOT

APS DATA ANALYTICS
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New devices, even more ML data



Current systems well suited to archival storage - why is this a problem for ML? 

Different access patterns:

▪ Broad queries – thousands of PVs

▪ Analytical postprocessing (min, max, median, …)

Stricter requirements:

▪ Near-realtime availability

▪ Fault-tolerant

Solution?

Ads!

APS DATA ANALYTICS
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User data collection created new ‘Big Data’ analytics/time-series databases!

▪ Column oriented data storage

▪ Specialized for fast data ingest, high compression, large mathematical queries

▪ Scales to PB of data

▪ Open-source and (mostly) free

SOLUTION FOR ML DATA
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Benchmarked several popular projects on historical data (ask me for details)

▪ Current choice – ClickHouse

– VERY fast and has SQL support

▪ How fast is fast? ~20x over existing scripts

▪ Example:

SOLUTION FOR ML DATA
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Integrated side-by-side with existing tools to minimize disruptions

INTEGRATION
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L3:B1.XPOS = 0.25
<1Hz

Standard logged devices

Extra on-demand devices for ML

All events

L3:B1.XRAW = 0.254

Modified Archiver Appliance to work as

data collector at any rate/event mask



▪ Data logging and analytics

▪ Anomaly detection/prediction (I. Lobach)

▪ Adaptive optimization

OUTLINE
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Anomaly Detection and Classification at APS

▪ Several proof-of-principle experiments for use cases of ML in the Injector 

Complex, using intentional-perturbations data for training and testing
https://napac2022.vrws.de/papers/tuye4.pdf

– Neural network classifier for sources of poor transmission efficiency

– Autoencoder for anomaly detection in the Particle Accumulator Ring (PAR)

– 𝛽-variational autoencoder for clustering of poor-performance data

▪ Program for anomaly detection in the magnet power supplies in the 

Storage Ring (APS and APS-U)
https://napac2022.vrws.de/papers/tupa29.pdf
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In this presentation:

https://napac2022.vrws.de/papers/tuye4.pdf
https://napac2022.vrws.de/papers/tupa29.pdf


Anomaly Detection in Storage Ring Power Supplies

▪ Motivation: the detected anomalies may help predict trips or (at least) create a priority list of PSs 

for maintenance. In turn, this reduces downtime.

▪ Available historical data:
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Process Variable Explanation

CurrentAI PS current

MagTempAI Magnet temperature

CapTempAI PS capacitor temperature

IGBTTempAI PS transistor temperature

OutVoltageAI PS voltage

1 point per 64 seconds starting from 2008

MeanMin, MeanMean, 

MeanMax in a 10 min window

Instantaneous 

Mean Current

PS Current Noise 

Monitor Data

Instantaneous Mean 

Absolute Deviation 

of Current

MADMin, MADMean, 

MADMax in a 10 min 

window

1 point per 10 minutes starting from 2001

APS Storage Ring has 40 sectors, each has A and B 

subsectors. We consider quadrupoles (Q), sextupoles (S), 

horizontal (H) and vertical (V) correctors (overall, 1320). 

Example of a magnet name: S40B:H1

We analyzed the APS run history from 2001 to 2022:

Found 629 ring fills that ended with “Int. Dump: End of Period”

Found 149 ring fills that ended with a PS trip, glitch, fault, or 

problem



Tool to review past detected anomalies
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▪ Can be used with any 

anomaly detection method, 

based on an anomaly score 

and a threshold.

▪ Currently, only H and V 

corrector power supplies

▪ Using current noise monitor 

data (MADMax-based 

approach, but also considered 

autoencoders, LSTMs)

▪ Model is retrained before 

every APS run, on the 

previous 10 runs (~3 years)

▪ Anomaly Statistics tab 

presents the number of fills 

with anomalies (not the 

number of anomalous data 

points)

▪ https://pypi.org/project/PyQt5/



Anomalies in Power Supply 

Temperatures in the Storage Ring
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▪ Detection of anomalies in power supply temperature maps 

is similar to object detection in images. Therefore, we have 

used object detection methods. Further, our intern 

(Alexandre Sannibale) is considering Convolutional Neural 

Networks for PS temperature maps.

▪ The presented anomaly was related to a stuck 

mixing valve for the cooling water. There is one 

mixing valve per every two neighboring sectors in 

APS. Therefore, we can see rising temperatures in 

sectors 19 and 20.



Autoencoder for Temperature of a Single Power Supply

(in a time window)
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▪ One can use several contiguous 

temperature values of a single PS as 

input for an autoencoder. Such 

autoencoders can be sensitive to 

unusual temperature behavior in time 

(even if the absolute value of 

temperature is not high enough to 

trigger an alarm on high temperature)

• Chosen autoencoder architecture:

20 → 10 → 5 → 10 → 20

• The autoencoder was trained on 10 

preceding reference data files.

• This approach did not produce any false 

positives for this magnet’s PS for the entire 

observation interval from 2008 to 2022.

This fill ended 

because of a 

trip in this PS

(S16B:S2)

*Threshold = 1.5



Anomaly Detection Performance / Outlook

▪ Certain anomalies in PS temperature maps (e.g., stuck mixing valve) can be detected with 

100% precision and zero false positive rate.

▪ Autoencoders may be able to detect anomalies invisible to less sophisticated algorithms. The 

temperature anomaly in S16B:S2 was only detected due to its unusual behavior in time. The 

value of the temperature was not too high.

▪ We made progress in anomaly detection in the PS Current Noise Monitor data. However, only 

up to 20% of trips were successfully predicted, the false positive rate was not insignificant. Still, 

anomalies were up to 500 times more likely in the data leading to a trip, than in the normal-

operation data.

▪ Jonathan Edelen and Ihar Lobach are working on improving the performance with more 

advanced algorithms, such as LSTM recurrent neural networks, which will be using all available 

process variables in one model (PS current, voltage, temperatures).

▪ In APS-U, we will have PS current data at 22 kHz. We have the freedom to do anything with 

these data. This will likely further improve performance

▪ Also, in APS-U, the PSs will have unique labels. In APS, they are labeled by magnet names.
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▪ Data logging and analytics

▪ Anomaly detection/prediction (I. Lobach)

▪ Adaptive optimization

OUTLINE
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ACCELERATOR OPTIMIZATION

Many approaches with various tradeoffs
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methods
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Operators



BAYESIAN OPTIMIZATION
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BAYESIAN OPTIMIZATION

Bayesian optimization (BO) a promising method for expensive problems

▪ Model-based and can encode expert knowledge

▪ Interpretable and scalable

Previous work showed good performance in time-invariant tasks
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Roussel PRAB 2021

See also Duris PRL 2020



ADAPTIVE BAYESIAN OPTIMIZATION

Many accelerators have time-dependent performance: f(t,x)

▪ External factors (temperature, etc.)

▪ Device drift / degradation

A challenge for conventional BO

▪ Without time model, drift appears as noise

▪ Convergence to average suboptimal state

▪ Common solution – run local optimizer after BO

▪ Can drift be modelled explicitly?
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More details in: https://napac2022.vrws.de/papers/thxd4.pdf



Consider time as another ‘input’ - has very different properties

▪ Periodic on various timescales (minutes, hours, days)

▪ Overall linear/polynomial trends 

Can compose sub-kernels along any subspace - what is the right one?

ADAPTIVE BAYESIAN OPTIMIZATION KERNEL
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K1 * K2 = LOGICAL AND

K1 + K2 = LOGICAL OR



ISOTROPIC KERNEL

Simplest choice – isotropic kernel

▪ ‘Just add a dimension’

Advantages: 

▪ Robust and simple to implement

Disadvantages:

▪ No global structure

▪ Lags behind changes
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t x



ISOTROPIC KERNEL

Simulation – corrector drift
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NO DRIFT DRIFT



ADAPTIVE ML MOTIVATION @ APS

APS injector supplies beam to storage ring and linac extension area 

▪ Proportional feedback used to compensate drifts but has high jitter

▪ Drift spectrum varies day to day - requires time-aware and time-adaptive control

▪ Have repeating patterns – want to exploit long-range correlations
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Our choice: Spectral Mixture Kernel

▪ Expressed as spectral density of several Gaussians

▪ Can approximate any stationary kernel

– No need to explicitly specify like periodic/RBF

▪ Starting point for Deep Kernel Learning

ADAPTIVE BAYESIAN OPTIMIZATION KERNEL
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SM ABO model

kernel

spectral density



RESULTS - SIMULATION

Example: sinusoidal signal with noise + initial steady state sampling
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RESULTS - SIMULATION

Example: sinusoidal signal with noise + initial steady state sampling
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RESULTS - SIMULATION
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ABO finds correct oscillation within 1 period

▪ Kernel density reflects broad noise + oscillation frequency



RESULTS - EXPERIMENT

Several tests in APS linac – trajectory MSE objective

▪ 10s cycle limit

▪ Train with last 20 minutes of history

Overall 2x jitter improvement (0.21/0.36/0.33)!
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CONSTRAINTS

Time awareness can be added

to constraint models

Gives anomaly prediction and

avoidance capability!

Can predict ‘lifetime’ – how long is

model capable of holding optimum
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CONSTRAINTS

Time awareness can be added

to constraint models

Gives anomaly prediction and

avoidance capability!

Can predict ‘lifetime’ – how long is

model capable of holding optimum
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CONTINUOUS USE CONSIDERATIONS

ABO has several other advantages for continuous ‘feedback’ over BO or PID:

▪ Graceful handling of failed points

– Retries will have new time and give different candidates

▪ Can control systems with time-lag

▪ Automatic adaptability to local conditions
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CONTINUOUS USE CONSIDERATIONS

ABO also inherits several BO disadvantages:

▪ Poor performance scaling (N3)

– Advanced techniques extend practical limit to >10k points [arXiv:1803.06058, see GPyTorch LOVE method]

▪ Eventually need to cut data

– Simple solution: circular data buffer

– Our approach: time-biased bandpass subsampling

▪ No hard robustness/convergence guarantees

– Can use lengthscale rate of change as a stability heuristic [arXiv:1803.03432]
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OPERATIONAL IMPLEMENTATION

We are making ML libraries to work with operational APS systems

▪ APSopt – algorithms + SDDS toolkit command line interface

– Migrate general logic to Xopt for collaborative use soon™

▪ pySDDS – Python SDDS format reader/writer

▪ pybeamtools – soft IOCs, surrogate models, and archiver/DB interface

Can make end-to-end virtual accelerators, test with real data, and deploy operationally
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Several simultaneous efforts underway

ML @ APS
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CONCLUSIONS

APS is preparing for APS-U

▪ Tight fixed schedule

▪ New known and unknown challenges

▪ ML tools can help in key areas

We are developing an interconnected production-level ML ecosystem:

▪ Shared data infrastructure

▪ Anomaly detection/prediction

▪ Adaptive optimization

▪ GUIs and control room tools

Focusing on internal use, but with portability and open-source in mind.

If you have things that drift/trip but shouldn’t, reach out!
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THANK YOU! 


