Phase Space Reconstruction from Accelerator Beam Measurements Using Neural Networks and Differentiable Simulations

Ryan Roussel

rroussel@slac.stanford.edu

Manipulating Beams in Phase Space

How do we measure particle beam distributions in 6D phase space?

$$\rho(x,p_x,y,p_y,z,\delta)$$

Maximum Entropy Tomography (MENT)

Hock K. and Ibison M., JINST, 2013

Inferring Beam Distributions Using Optimization

Optimization Strategies for Inference

(ML training)

5

input dimension if not unimodal

Go ahead, try it with simplex...

Optimization Strategies for Inference

Scales to >10k parameters (ML training)

Scales poorly with input dimension if not unimodal

Go ahead, try it with simplex...

Differentiable Simulations

Keep track of derivative information during **every** calculation step.

Enables gradient based optimization of model error with respect to all free parameters using the chain rule.

Easily optimize models with >10k free parameters.

 $\frac{\partial Z}{\partial Y}, \frac{\partial Z}{\partial K}, \frac{\partial \sigma_Z}{\partial K}, \dots$

Want to parameterize 6D phase space distributions with a function that is **flexible** and **learnable**.

Fully connected NN with ~O(1k) parameters

Maximum Entropy Loss Function

$$\begin{split} l &= -\log\left[(2\pi e)^{3}\varepsilon_{6D}\right] + \lambda\sum_{n,i,j}R_{n}^{(i,j)}\left|\log\left(\frac{R_{n}^{(i,j)}}{Q_{n}^{(i,j)}}\right)\right|\\ & \text{Initial} & \text{Image Divergence}\\ & \text{Distribution Entropy} & \text{Constraint Penalty} \end{split}$$

No evidence Weak evidence Strong evidence $\int_{\varepsilon} \frac{\varepsilon}{1 + \varepsilon} \int_{\varepsilon} \frac{\varepsilon}{1 + \varepsilon} \int_{\varepsilon$

Synthetic Example

Synthetic beam distribution in simulation

SLAC

Screen images

Synthetic Example Reconstruction

Measuring Model Uncertainty

Create a snapshot ensemble to measure uncertainty by cycling the learning rate

Huang G. et al., ICLR 2017

Measuring Model Uncertainty and Convergence

Tomography Example from AWA

AWA Reconstruction Results

Red border denotes test samples

AWA Reconstruction Results

Conclusions

- We can create detailed reconstructions of beam phase spaces from simple tomographic accelerator measurements without special diagnostics
- Reconstructions from differentiable simulations are not limited by analytical tractability, number of free parameters
- Theoretically we are only limited by model detail and accuracy, need further investment in differentiable simulations
- Need to expand our idea of what can be used as a diagnostic

y (mm)

21

Thanks!

SLAC

- Auralee Edelen
- Chris Mayes
- Daniel Ratner

UChicago

- Juan Pablo Gonzalez-Aguilera
- Argonne Wakefield Accelerator
- Seongyeol Kim
- John Power
- Eric Wisniewski

Questions?