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➔ Introduction 
◆ Some of the problems we are facing

● Hysteresis in quadrupoles for slow extraction
● Tune and chromaticity settings 
● Beam induced heating and dynamic vacuum in kickers

➔ Deep learning models and first results
➔ First use in operation
➔ Summary and outlook 
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Introduction



The CERN accelerator chain
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➔ The SPS North experimental Area hosts very 
interesting and demanding fixed target 
experiments: COMPASS, NA62…

◆ Slow extraction is used to deliver constant proton 
and heavy ion flux => 3rd integer slow extraction

➔ ISOLDE takes the largest number of protons 
accelerated at CERN

➔ The PS serves directly several experimental 
facilities, like EAST area and nToF, but also 
indirectly via AD/ELENA: ASACUSA, ATRAP, 
GBAR… 

➔ LHC => towards HL-LHC
➔ In all cases, stable conditions of the beam 

delivery and quality is key to data 
collection 

LHC and other experiments
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➔ Hysteresis on the main SPS quadrupoles responsible for extracted 
beam quality degradation [1]

◆ Beam based measurements highlighted tune variation 
◆ Magnetic measurements on spare quadrupole showed field variation compatible 

with beam observations

SPS slow extraction reproducibility
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https://accelconf.web.cern.ch/ipac2018/papers/tupaf035.pdf
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MADX simulations from quad and dipole measurements
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➔ Multi-cycled machines need to adapt to 
different beam requirements hence 
different parameters 

➔ This translate into the need to be able to 
quickly change from one set of settings to 
others 

◆ Like tune, chromaticity 
➔ On paper, this could be very simple but  in 

reality we have eddy-currents, non-linearity 
and non-ideality of magnets and power 
supplies 

➔ How can we produce a model that given 
some target beam parameters returns 
settings needed for the accelerator 
magnets? 

Chromaticity and tune settings



➔ Acceleration of high intensity beams in the SPS 
is limited by 2 kickers:

◆ One of the injector kickers (MKP-L): static and dynamic 
vacuum, together with its temperature, are the most 
severe limitation for high intensity beams in the SPS

◆ The horizontal beam dump kicker (MKDH) is following 
closely => spurious vacuum spikes make the vacuum 
interlock trip when attempting to accelerate high 
intensity/short bunches to flat top

➔ The MKP-L will be changed at the end of the 
year, but we had to find a way to work around 
its limitation during last 2 years operation 

➔ The MKDH will stay in the machine, hence 
understanding and predicting its behaviour is 
crucial 

High intensity limitations in the SPS

C. Zannini



What are we looking for and what we have 

➔ Correct spill structure by predicting machine magnetic behaviour
◆ Very accurately predict effect on the beam of available machine settings => easy to 

change users on the fly and maintain performance 

➔ Predict beam induced heating, vacuum behaviour given beam 
parameters and status of our systems from beam observations => 
better scheduling and more efficient operation
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◆ Very accurately predict effect on the beam of available machine settings => easy to 

change users on the fly and maintain performance 

➔ Predict beam induced heating, vacuum behaviour given beam 
parameters and status of our systems from beam observations => 
better scheduling and more efficient operation

➔ The available dataset we have are not enormous
◆ Complicated NN easy to overfit
◆ Physics models available (in many cases) but too slow or not very accurate 

➔ Working towards exploiting physics knowledge to regularise, improve 
NN performance and be able to “extrapolate” to future or unknown 
quantities 

What are we looking for and what we have 



Deep learning models



➔ Embedding physics knowledge in NN is becoming very common
➔ Very complete summary of applications [2] (figure taken from [2])
➔ We were looking for a way to extend temperature prediction to very 

long time periods and to predict ferrite temperature…

Physics Informed Neural Networks
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➔ First proposed to solve nonlinear PDE [3] (all plots from [3])
➔ Basically using boundary and initial conditions values, NN can 

interpolate the whole system dynamics “knowing” the PDE that 
describe the system

◆ At the same time though, one can just use a physics loss term…it doesn’t have to be a 
PDE system

Physics Informed Neural Networks
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Physics Informed Neural Networks

Source: [4]

➔ DNN cannot extrapolate beyond the 
training domain…which is exactly 
what we would expect from 
interpolation function

min(Loss) => Loss = Mean(data - prediction)2

15

https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/


Physics Informed Neural Networks

Source: [4]

➔ DNN cannot extrapolate beyond the 
training domain…which is exactly 
what we would expect from 
interpolation function

16

https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/


➔ DNN cannot extrapolate beyond the 
training domain…which is exactly 
what we would expect from 
interpolation function

➔ Go beyond data domain => more 
information needed:

Physics Informed Neural Networks

Source: [4]

min(Loss) => Loss = Mean(data - prediction)2 
+ Additional_info(prediction)
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➔ Two LSTM layers with 170 units with dropout layer with 50% 
probability, linear layer for the output prediction

◆ The loss function is calculated comparing the whole output sequence.

LSTM for temperature prediction



➔ Bridge from pure data-driven model and pure physics model to PINN
➔ Solve heat equation with forcing term from beam-based measurements:

◆ Power loss from beam induced heating

◆ Heat propagation inside the kicker and to temperature sensor:

Adding physics information

Never-seen forcing term



➔ First attempt using simple LSTM (as done for kicker temperature 
prediction)

➔ Very poor results! Dataset available not large enough and complicated 
dynamics

Quadrupoles hysteresis prediction 



➔ Hysteresis is rather common in physics and many other fields 
(chemistry, biology, economics…)

➔ Modelling is rather challenging: main models Preisach and Bouc-Wen
➔ In [2], PINN applied to hysteresis modelling of behaviour of structures 

under seismic excitation 
◆ This was our inspiration => very similar problem but different system

➔ Here is the model used in [2]:

Hysteresis modelling
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➔ A generic hysteretic model can 
be written as [5]:

➔ Using input x = {I, dI/dt} and 
output y = {B, dB/dt}, we wrote 
our model and loss:

PINN for SPS quadrupole hysteresis 
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➔ After many attempts, we managed to train 
successfully one PINN for hysteresis prediction 

◆ Not fully optimised yet
◆ Not enough data to make a proper general model for 

SPS quadrupoles
◆ Hyperparameters not tuned yet

PINN for SPS quadrupole hysteresis 
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➔ After many attempts, we managed to train 
successfully one PINN for hysteresis prediction 

◆ Not fully optimised yet
◆ Not enough data to make a proper general model for 

SPS quadrupoles
◆ Hyperparameters not tuned yet

➔ Just proof of concept - PhD student coming!

PINN for SPS quadrupole hysteresis 
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➔ We can measure tune and record all machine settings 
◆ Also save momentum offset

➔ Forcing (via loss function) the relationship between tune and 
chroma for given momentum offset => get chroma along the 
cycle 

➔ We could then invert this model to be able to control tune and 
chroma on demand => normalizing flows?

Tune and chromaticity settings



➔ Special case of VAE => Supervised [Variational] Auto Encoder (idea 
taken from [6])

VAE for BTVD image reconstruction

Li (θ,ϕ)=−Ez∼qθ(z∣xi)[logϕ(xi∣z)]+ wKL KL(qθ(z∣xi), p(z)) + wg MSE(c, Z) 

[c] Simulations [X] [Z]E D [X’]

Generative parameters BTVDD image

SAE

=0

!=0
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“Physics” loss
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➔ LHC beam dump status 
reconstruction from beam images

➔ Here the most complicated part is 
to simulate different filling 
patterns 

◆ Number for batches very difficult for 
many single bunches

◆ batch spacing very difficult for single 
bunches 

BTVDD image reconstruction in LHC
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BTVDD image reconstruction in LHC
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First use in operation



➔ Testing the prediction on 10/14h scrubbing, with 
288x1.5e11 p at 100% availability...we should 
reach the 60°C in the first 2 runs of 10h!!

➔ Here we really see this as the model is not 
capable to extrapolate…

➔ Both models saturates at 60°C (since no data 
beyond this in our training set) and cannot 
predict correctly cooldown after 57°C as data on 
that either...

Prediction for 2021 scrubbing
Inputs c1 c2 c3 c4

Ib, ns(e11) 1.5 1.5 1.5 1.5

Nb(#) 288 288 216 144

Av 1.0 1.0 1.0 1.0

bl(s: BQM) 5e-9 5e-9 5e-9 5e-9

Ioff(e11/cycle) 0.0 0.0 0.0 0.0

T0(°C) 40 40 40 40

Tbin(min) 5 5 5 5

Tcycle(s) 17 17 17 17

TSC(s) 40.8 40.8 40.8 40.8

Ton->[h] [10] * 8 [6] * 8 [8] * 7 [10] * 7

Toff->[h] [14] * 8 [18] * 8 [16] * 7 [14] * 7

Case 4



Summary and prediction
➔ Testing prediction on different scenarios 
➔ Summary:

◆ Model results very promising 
◆ Model ready and used in CCC to 

make estimation of time left for HI 
beams

◆ Model not capable to extrapolate
➔ Need to include physics in the 

model…

K. Li
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➔ We are working towards more automated and even more predictable 
machine operation 

➔ We are leveraging NN - from very simple DNN to more exhotic 
versions 

➔ In order to cope with relative small dataset and to be able to 
“extrapolate”, PINN are showing to be a great asset 

◆ Rather simple to introduce physics awareness 
◆ Difficult to train though 

➔ First results look pretty encouraging
◆ In many cases still at PoC stage

➔ PINN still not fully finished for beam induced heating prediction 
◆ Hysteresis predictions is a very large topic - new PhD student starting soon 

➔ Looking at other possible applications for PINN:
◆ Residual radiation prediction in tunnels
◆ Optimisation of septa design via PINN-surrogate…

Summary and outlook
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➔ We can transform the problem to 
predict the probability of a vacuum 
spike give beam parameters 

➔ Pure Bayesian probabilistic model: used 
pyMC to build a model that respect 
physics behind vacuum response 

➔ Such a model can also show us if the 
element is showing conditioning with 
time 

MKDH pressure prediction

Number of batches

48 bunches 96 bunches 144 bunches 192 bunches 240 bunches



LSTM model for MKP: results
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➔ Trained model repreduced training and 
validation data set almost perfectly

◆ Trained on max sequence of 30 steps and 
capable to extend to ~100 with reasonable 
errors

◆ Error in the order of a couple of degrees on test 
dataset

➔ Bayesian version looking also promising



➔ With this architecture, we can 
generate BTVDD images from 
generative parameters (number 
of kickers…) using the decoder 
by itself

➔ Orthogonal scan possible 

Latent space scan

MKBH

MKBV

deltaT

Zi,j
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➔ Of course the final goal is to predict 
real images…

➔ Using both generative parameters 
and image reconstruction score, 
anomalous case found!

Deploy on real data
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