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- |Introduction

¢ Some of the problems we are facing
e Hysteresis in quadrupoles for slow extraction
e Tune and chromaticity settings
e Beam induced heating and dynamic vacuum in kickers

-> Deep learning models and first results
=> First use in operation
= Summary and outlook
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The CERN accelerator chain
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LHC and other experiments

B 2
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The SPS North experimental Area hosts very
Interesting and demanding fixed target
experiments: COMPASS, NAG2...

¢ Slow extraction is used to deliver constant proton
and heavy ion flux => 3rd integer slow extraction

ISOLDE takes the largest number of protons
accelerated at CERN

The PS serves directly several experimental
facilities, like EAST area and nToF, but also
indirectly via AD/ELENA: ASACUSA, ATRAP,
GBAR...

LHC => towards HL-LHC

In all cases, stable conditions of the beam
delivery and quality is key to data
collection
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SPS slow extraction reproducibility

-> Hysteresis on the main SPS quadrupoles responsible for extracted
beam quality degradation [1]

¢ Beam based measurements highlighted tune variation

¢ Magnetic measurements on spare quadrupole showed field variation comypatible

with beam observations

Tune variation in the cycle after a configuration change
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https://accelconf.web.cern.ch/ipac2018/papers/tupaf035.pdf

SPS slow extraction reproducibility

-> Hysteresis on the main SPS quadrupoles responsible for extracted
beam quality degradation [1]

¢ Beam based measurements highlighted tune variation

¢ Magnetic measurements on spare quadrupole showed field variation comypatible
with beam observations

MADX simulations from quad and dipole measurements

Tune variation in the cycle after a configuration change
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https://accelconf.web.cern.ch/ipac2018/papers/tupaf035.pdf

Chromaticity and tune settings

B 2

Multi-cycled machines need to adapt to
different beam requirements hence
different parameters

This translate into the need to be able to
quickly change from one set of settings to

others
¢ Like tune, chromaticity

On paper, this could be very simple but in
reality we have eddy-currents, non-linearity
and non-ideality of magnets and power
supplies

How can we produce a model that given
some target beam parameters returns
settings needed for the accelerator
magnets?
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High intensity limitations in the SPS

- Acceleration of high intensity beams in the SPS

is limited by 2 kickers:

55 T ! [mke |

¢ Oneoftheinjector kickers (MKP-L): static and dynamic B} ML
vacuum, together with its temperature, are the most
severe limitation for high intensity beams in the SPS =
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What are we looking for and what we have

=> Correct spill structure by predicting machine magnetic behaviour

¢ \Very accurately predict effect on the beam of available machine settings => easy to
change users on the fly and maintain performance

=> Predict beam induced heating, vacuum behaviour given beam
parameters and status of our systems from beam observations =>
better scheduling and more efficient operation




What are we looking for and what we have

=> Correct spill structure by predicting machine magnetic behaviour

¢ Very accurately predict effect on the beam of available machine settings => easy to
change users on the fly and maintain performance

=> Predict beam induced heating, vacuum behaviour given beam
parameters and status of our systems from beam observations =>
better scheduling and more efficient operation

- The available dataset we have are not enormous

¢ Complicated NN easy to overfit
¢ Physics models available (in many cases) but too slow or not very accurate

=  Working towards exploiting physics knowledge to regularise, improve
NN performance and be able to “extrapolate” to future or unknown
guantities



Deep learning models



Physics Informed Neural Networks
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Embedding physics knowledge in NN is becoming very common
Very complete summary of applications [2] (figure taken from [2])
We were looking for a way to extend temperature prediction to very
long time periods and to predict ferrite temperature...
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https://arxiv.org/pdf/2201.05624.pdf
https://arxiv.org/pdf/2201.05624.pdf

Physics Informed Neural Networks

First proposed to solve nonlinear PDE [3] (all plots from [3])
Basically using boundary and initial conditions values, NN can
interpolate the whole system dynamics “knowing” the PDE that

describe the system

¢ At the same time though, one can just use a physics loss term...it doesn’t have to be a
PDE system
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https://www-sciencedirect-com.ezproxy.cern.ch/science/article/pii/S0021999118307125
https://www-sciencedirect-com.ezproxy.cern.ch/science/article/pii/S0021999118307125

Physics Informed Neural Networks

=> DNN cannot extrapolate beyond the
training domain..which is exactly

what we would expect from
interpolation function

min(Loss) => Loss = Mean (datd - prediction)?

Source: [ﬁ]_

Training step: 10

/\ /\ - Exact solution

= Neural network prediction
Training data

15



https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/

Physics Informed Neural Networks

=> DNN cannot extrapolate beyond the
training domain..which is exactly

what we would expect from
interpolation function

N
L= (ule) — la;,0))
Source: [ﬂ

Training step: 10

/\ /\ - Exact solution

= Neural network prediction
Training data
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https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/

Physics Informed Neural Networks

@)

-> DNN cannot extrapolate beyond the
training domain..which is exactly
what we would expect from

interpolation function
N
L= (ul;) — i(x;,0))

-> Go beyond data domain => more
information needed;

min(Loss) => Loss = Mean(datd - prediction)?
+ Additional_info(prediction)

17


https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/

Physics Informed Neural Networks

-> DNN cannot extrapolate beyond the

Training a

neural network
Ty

............
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what we would expect from eﬁégf& Lo
. . . =4 '\‘v‘Y'-‘ IV " #I e
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N
L= (ula) = (i, )

-> Go beyond data domain => more
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= _:Compare to

min(Loss) => Loss = Mean(datd - prediction)?
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training data
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Training step: 150
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== Neural network prediction
Training data
Physics loss training locations
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https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/

LSTM for temperature prediction

= Two LSTM layers with 170 units with dropout layer with 50%

probability, linear layer for the output prediction
¢ The loss function is calculated comparing the whole output sequence.

Y = NN(X); X € t(—40,0]; Y € t[1, 30].
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Adding physics information

-> Bridge from pure data-driven model and pure physics model to PINN

-> Solve heat equation with forcing term from beam-based measurements:

¢ Power loss from beam induced heating
o0

AW = (feloNb)> 3 (INkwo) PR [Zj(kwo))) L7 AW

k=—00 dt FcooICth
¢ Heat propagation inside the kicker and to temperature sensor:
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Quadrupoles hysteresis prediction

-> First attempt using simple LSTM (as done for kicker temperature

prediction)
=> Very poor results! Dataset available not large enough and complicated
dynamics
—— Ground truth
o 31 — Prediction 0.86600
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w '—m‘ 2 - [_‘
g 107! E S 0.86550
. = 11 2 0.86525 1
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Hysteresis modelling
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e 3

e 2
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Hysteresis is rather common in physics and many other fields
(chemistry, biology, economics...)

Modelling is rather challenging: main models Preisach and Bouc-Wen
In [2], PINN applied to hysteresis modelling of behaviour of structures

under seismic excitation
¢ Thiswas our inspiration => very similar problem but different system

Here is the model used in [2]:

PhyLSTM? Network

22


https://arxiv.org/pdf/2002.10253.pdf
https://arxiv.org/pdf/2002.10253.pdf

PINN for SPS quadrupole hysteresis

=> A generic hysteretic model can
be written as [5]:

ay(t) + b(y,y) +r(y,y, y(1)) = I'x(t) y+g9g=r_x

= Using input x ={l, dl/dt} and
output y = {B, dB/dt}, we wrote
our model and loss:

L1 = MSE(z1(01) — y1) + MSE(22(01) — ¥2)

Lo = MSE(z1(01) — z2(01))

L3 = MSE(22(61) + MLP(9(1.,62), X1))

Ly = MSE(r(61,63) —2z3(61));r = f(®); ® = {Azp, r}

=

Ltot =Ly +BLy +YL3 + MLy

{212, 23}
®d LSTM3 7

Ly
—> —> —> —>
Ll\
Lo
21
2
LSTM2 9 MLP g+TX \~
L3
—_ > —> —

z=4{B, B r}

y ={B, B}
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https://arxiv.org/pdf/2002.10253.pdf

PINN for SPS quadrupole hysteresis

- After many attempts, we managed to train

successfully one PINN for hysteresis prediction

Not fully optimised yet

Not enough data to make a proper general model for
SPS quadrupoles

Hyperparameters not tuned yet

PhyLSTMS3

(relu): LeakyRelLU(negative-slope=0.01)

(Lstm0): LSTM(1, 350, num-Llayers=3, batch-first=True, dropout=0.2)
(fcO): Linear(in-features=350, out-features=175, bias=True)

(fc01): Linear(in-features=175, out-features=3, bias=True)

(gradient): GradientTorch()

(Lstm): LSTM(3, 350, num-layers=3, batch-first=True, dropout=0.2)
(fcl): Linear(in-features=350, out-features=175, bias=True)

(fc11): Linear(in-features=175, out-features=1, bias=True)

(lstm3): LSTM(2, 350, num-Llayers=3, batch-first=True, dropout=0.2)
(fc2): Linear(in-features=350, out-features=175, bias=True)

(fc21): Linear(in-features=175, out-features=1, bias=True)

(g-plus-x): Sequential(

(0): Linear(in-features=2, out-features=350, bias=True)

(1): ReLU()

(2): Linear(in-features=350, out-features=1, bias=True))

Losses
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Epochs
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PINN for SPS quadrupole hysteresis

. i —— sft+md NN
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Tune and chromaticity settings

kor
- We can measure tune and record all machine settings kQ
¢ Also save momentum offset op
-> Forcing (via loss function) the relationship between tune and Ksr1 (0)
chroma for given momentum offset => get chroma along the ksp1 0y,
cycle Flise [ = | o
= We could then invert this model to be able to control tune and kspo Q’,’
chroma on demand => normalizing flows? ks \ =V
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& 0ga=—" Qp - measured
0.12 1
0.10 1 5 2 5
1000 2000 3000 4000 P = \/[thw - (Qﬁh +£Qi,z)] + [Qv,,,m, - (Q/)'v +£Q‘/})] [
7.5 \J # K
5.0 1
sEin W, LWL
0.0+ \,.\” \J
—2.51

1000 2000 3000 4000
# datapoints



VAE for BTVD image reconstruction

-> Special case of VAE => Supervised [Variational] Auto Encoder (idea
taken from [6])
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https://arxiv.org/pdf/2002.00097.pdf

BTVDD image reconstruction in LHC
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BTVDD image reconstruction in LHC
Training nMKBV deltaT batchLength numBatches  batchSpacing energy
- LHC beam dump status A T '
. . £ 05 0.5 0a AL 0541 4 0.5 :.'y'.:?,";
reconstruction from beam images P ] oy | wk® |l .
-> Here the most complicated part is S L e i
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many single bunches
& Dbatch spacing very difficult for single

bunches
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First use In operation



Prediction for 2021 scrubbing

-

Temperature / °C

65

55 A

50 4

45 A

40 A

35 4

30 +

Testing the prediction on 10/14h scrubbing, with
288x1.5e11 p at 100% availability..we should
reach the 60°C in the first 2 runs of 10h!!

Here we really see this as the model is not
capable to extrapolate...

Both models saturates at 60°C (since no data
beyond this in our training set) and cannot
predict correctly cooldown after 57°C as data on
that either...
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Summary and prediction

-> Testing prediction on different scenarios

=  Summary:

*
*

*

Model results very promising
Model ready and used in CCC to
make estimation of time left for Hi

beams

Model not capable to extrapolate
=> Need to include physics in the

model...
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Summary and outlook <)

=  We are working towards more automated and even more predictable
machine operation

= We are leveraging NN - from very simple DNN to more exhotic
versions

-> In order to cope with relative small dataset and to be able to

‘extrapolate”, PINN are showing to be a great asset
¢ Rather simple to introduce physics awareness
¢ Difficult to train though

=> First results look pretty encouraging
¢ In many cases still at PoC stage
=> PINN still not fully finished for beam induced heating prediction

& Hysteresis predictions is a very large topic - new PhD student starting soon

-> Looking at other possible applications for PINN:
¢ Residual radiation prediction in tunnels
¢ Optimisation of septa design via PINN-surrogate...



hanks!



MKDH pressure prediction

- We can transform the problem to
predict the probability of a vacuum
spike give beam parameters

=> Pure Bayesian probabilistic model: used
pyMC to build a model that respect
physics behind vacuum response

-> Such a model can also show us if the LR p— e
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LSTM model for MKP: results

- Trained model repreduced training and

validation data set almost perfectly

¢ Trained on max sequence of 30 steps and
capable to extend to ~100 with reasonable
errors

¢ Errorinthe order of a couple of degrees on test
dataset

-> Bayesian version looking also promising
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Latent space scan

- With this architecture, we can
generate BTVDD images from
generative parameters (number
of Kickers...) using the decoder
by itself

-> Orthogonal scan possible
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Deploy on real data
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